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ABSTRACT 

 

The selection of appropriate engineering seismological (IM) parameters to describe the intensity of 

an earthquake in vulnerability analysis has been a concern for engineers and geologists since the early days 

of earthquake engineering. For the prediction of the structural damage, either nonlinear dynamic analyses 

or empirical or semi-empirical vulnerability curves can be used to predict the expected seismic damage to 

structures.  

Fragility curves have traditionally been defined by describing the ground acceleration in a single IM. The 

selection of an appropriate IM was classically done by simple correlation analyses or by using simpler 

linear or nonlinear models. In the last decade, there have been increasing attempts in the scientific field to 

use machine learning methods to predict the expected seismic damage to structures. Here, many IMs as 

well as structural properties have been used as input simultaneously. However, using a sensitivity analysis, 

it is also possible to draw conclusions about the relevance of IMs in the investigated data set and to make a 

new statement about suitable IMs for fragility analysis based on the nonlinear statistical models. 

 

INTRODUCTION 

 

For the selection of relevant seismic intensity measures, several conditions have to be considered. 

The main criteria is the efficiency of the IM to describe the engineering demand parameter (EDP) (Luco 

und Cornell 2007). Also, the sufficiency of the IM describing the dependency between probabilistic seismic 

hazard analysis (PSHA) and fragility analysis has to be considered. Additionally, further points that are 

relevant for the selection can be the complexity and scalability of the IM, existing Ground Motion 

Prediction Equations and independency from structural properties (Marafi et al. 2016). While classically 

linear models have been used for the calculation of the efficiency of an IM, nonlinear connections between 

IM and EDP cannot always be recognized. For this purpose, the sensitivity of an artificial neural network 

train to predict the EDP from a given set of IMs is investigated in this work. 

There are many approaches for the use of artificial intelligence in structural engineering (Adeli 2001), but 

most of them are limited to the field of research. The study of building damage using artificial neural 

networks (ANN) has also been investigated in some approaches. Molas and Yamazaki (Molas und 

Yamazaki 1995) investigated the relationship between individual ground shaking parameters and a 

combination of two or three parameters with the ductility factor for typical Japanese wood structures using 

artificial neural networks. Lautour and Omenzetter (Lautour und Omenzetter 2009) used for the input data 

set, in addition to ground vibration parameters, 13 structural parameters which contained relevant properties 

of the considered reinforced concrete structures. Hereby they successfully determined the Park-Ang damage 

indicator. However, for an unknown earthquake, they obtained a large scatter of results.  



 

26th International Conference on Structural Mechanics in Reactor Technology 

Berlin/Potsdam, Germany, July 10-15, 2022 

Division VII 

 

Morfidis and Kostinakis published in 2017 (Morfidis und Kostinakis 2017) a study regarding combinations 

of earthquake parameters for the optimal prediction of the damage state of R/C buildings using artificial 

neural networks. In this study, the maximum interstory drift ratio was used as the damage index, and two 

versions of the stepwise method (forward and backward) and the Garson's approach were used for the 

sensitivity analysis of the model. However, the classification of the seismic parameters based on their 

correlation with the damage state was not clear, as it depends on the configuration and training algorithm 

of the ANNs, as well as on the method used for the classification. The best results were obtained for Housner 

intensity. 

In 2019, Mashmouli (Mashmouli et al. 2019) used the model-dependent sensitivity analysis method of 

partial derivative on ANNs with wavelet activation functions on a single-mass oscillator. However, no IM 

could be uniquely identified. 

Therefore, in the following, one model-dependent and one model-independent sensitivity analysis methods 

will be used to identify the most relevant IM. 

 

ARTIFICIAL NEURAL NETWORKS 

 

Artificial neural networks can recognize patterns comparable to natural neural networks by 

sufficient training and then apply these patterns to unknown problems. An artificial neuronal network 

consists of several layers i with neurons j which have weighted connections 𝑤𝑖,𝑗. The input information is 

passed in modified from one layer to another. 

An artificial neural network typically consists of Input-, Hidden- and Output Layer. To achieve the best 

configuration for the network, the number of hidden layers as well as the number of neurons per hidden 

layer can be modified. 

The function of a neuron consists in calculating the weighted sum of all inputs from the previous layer 𝑛𝑒𝑡𝑗 

(1). Each of the information given from one neuron 𝑜𝑖 to the next is given a weighted connection 𝑤𝑖,𝑗.  

𝑛𝑒𝑡𝑗 = ∑(𝑜𝑖 ∙ 𝑤𝑖,𝑗)

𝑖∈𝐼

 (1) 

Combined with this information and the bias 𝛩𝑗 the activation function 𝑓𝑎𝑐𝑡 calculates the output of the 

neuron 𝑎𝑗(𝑡) (2). (Kruse et al. 2015). 

𝑎𝑗(𝑡) =  𝑓𝑎𝑐𝑡(𝑛𝑒𝑡𝑗(𝑡), 𝑎𝑗(𝑡 − 1), 𝛩𝑗) (2) 

The most common activation functions are the Heaviside, Linear and Sigmoid functions. The output 

function (3) finally calculates the information from the activation, which is passed on to the following 

neurons. 

𝑓𝑜𝑢𝑡(𝑎𝑗) =  𝑜𝑗  (3) 

In the training process, the error of the net is calculated and an attempt is made to adjust the error function 

by adjusting the weights. 𝐸𝐷 to minimize (4). In backpropagation, the error is minimized backwards (i.e. 

from output to input) by adjusting the weights (Kruse et al. 2015). By minimizing the error, step by step, 

an attempt is made to approach a local minimum. 

𝐸𝐷 =∑
1

2
𝑙,𝑐

 (𝑜𝑙,𝑐 − 𝑡𝑙,𝑐)2 (4) 

A wide range of training algorithms is available to optimize parameters and minimize errors. One of the 

fastest training algorithms is the Levenberg-Marquardt-Algorithm (LM) (Beale et al. 2017). This is a 

variation of the Gaussian-Newton method, which has the advantage of not requiring the second derivation 

of the error. This combines the advantages of the fast convergence of the Gaussian-Newton method with 

the secure convergence of the gradient descent (Schröder und Buss 2017). 

 



 

26th International Conference on Structural Mechanics in Reactor Technology 

Berlin/Potsdam, Germany, July 10-15, 2022 

Division VII 

 

 

 

SENSITIVITY ANALYSIS METHODS 

 

Different methods exist for the sensitivity analysis of artificial neural networks. These can be 

divided into model-dependent and model-independent methods. The model-dependent methods use the 

weights of the ANN and calculate the rank of the input parameters. The model-independent approaches 

only take the data into account and classify the importance of the characteristics based on evaluation 

functions. For the evaluation of the input variables of the ANN, the Permutation Importance (model-

independent) and Partial Derivative (model-dependent) method were selected, which are explained in more 

detail below. 

 

PERMUTATION IMPORTANCE 

 

This algorithm analyses the sensitivity of features using the trained model (Breiman 2001; Altmann 

et al. 2010). Features importance are calculated by measuring how metrics change when one of the features 

is not available. This can be achieved by removing each of the features from the training dataset and 

retraining the model. It turns out that the input layer of the network itself needs to be changed each time. 

Because of that, Permutation Importance takes a different approach. Instead the feature values are replaced 

one by one with random noise while leaving the target and all other columns in place. In order to keep the 

value distribution, this can be achieved by shuffling the existing feature values. 

In detail, the permutation importance is calculated as follows. First, a model is fitted and a baseline metric 

is calculated on some data. Next, a feature from the same data is permuted and the metric is evaluated again. 

The permutation importance is defined to be the difference between the permutation metric and the baseline 

metric. These steps are computed for all the columns in the dataset to obtain the importance of all the 

features. A high value means that the feature is important for the model. In this case, the shuffling of the 

values brakes the relationship with the target and results in low-quality predictions (high error). Instead, a 

low value means the permutation metric is near to the original one, i.e., a low predictive power.  

 

PARTIAL DERIVATIVE 

 

Partial derivative is a model-dependent sensitivity analysis method that evaluates local sensitivity, 

i.e., the effect of changes at each of the input nodes on the output values (Mashmouli et al. 2019). The 

partially derived sensitivity analysis method requires the extraction of learned weight matrices containing 

coefficients for each of the neurons in all input, hidden, and output layers during the training process. 

𝑺𝑰 = ∑ (𝑺𝒏×𝒍
𝟐 )𝑐

𝑛=1 /𝑐   with   𝑺𝒏×𝒍 = 𝒇𝟑
′ × [𝒘𝟑]𝑙,𝑘 × 𝒇𝟐

′ × [𝒘𝟐]𝑘,𝑗 × 𝒇𝟐
′ × [𝒘𝟏]𝑗,𝑖 

(5) 

This method involves computing the Jacobian matrix, which is computed for observations in a given 

dataset, and stores the weights assigned to each neuron in the input layer. The squared weights for each 

feature are summed and assigned to each feature for scoring (5). 

 

DATASET 

 

To investigate the relationship between engineering seismological parameters and damage on the 

structure, nonlinear dynamic analyses of four structures are performed using the finite element program 

OpenSees (Pacific Earthquake Engineering Research Center). 

Four buildings with different heights are used to cover a spectrum of common structures. Each of the two, 

four, six, and eight-story building models is of reinforced concrete frame construction. For simplicity, the 

buildings are represented as 2D models. All reinforced concrete beams are provided with a permanent and 
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a variable load. The structures are designed according to the specifications of DIN EN 1998 and DIN EN 

1992. The properties of the created building models can be seen in Figure 1. 

 

Figure 1: Considered structures 

 

Damage indicators are used to quantify damage in the structure. A large number of such indicators can be 

found in the literature. The most common local damage indicator was developed by Y. J. Park and A. H-S. 

Ang proposed in 1984. The efficiency of the parameter in describing the building damage was confirmed 

in prior research works (Alavanitopoulos et al. 2009, Buratti 2012). Park and Ang used the test results of 

reinforced concrete components from the USA and Japan to precisely calibrate their indicator. The damage 

indicator defines the damage of an element as a linear combination of deformation and energy, each 

normalized by the capacity (6). The energy is calculated with the coefficient of β to consider the influence 

of cyclic loading or the reduction in stiffness. In the following, the rotation is used as the deformation 

parameter θ (Elenas and Meskouris 2001). The Overall Structural Damage Index was calculated to obtain 

the global damage of the structure from the local damage to the components. This adds up the damage 

indicators of the individual components and weights them as a function of the hysteresis energy. 

𝐷𝐼𝑃𝑎𝑟𝑘𝐴𝑛𝑔 = 
𝜃𝑚𝑎𝑥
𝜃𝑢

+  𝛽 ∗ ∫(
𝜃𝑛
𝜃𝑢
)
𝛼

 
𝑑𝐸

𝐸𝑐(𝜃𝑛)
 (6) 

The selection of earthquake histories for the nonlinear analysis of a structure is done by means of target 

spectrum according to Eurocode. A set of 280 earthquake time histories from New NGA-West 2 Ground 

Motion Database (Pacific Earthquake Engineering Research Center) is selected. For a distance between 15 

and 100 km, a magnitude of between 5.5 and 7.5 and assumed target spectrum according to Figure 2. 

  

Figure 2: Spectrum of the selected earthquake time series 
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For the description of the earthquake acceleration record, seismic intensity measures are used. Many IMs 

exist for the engineering description of an earthquake. Classical values for these are the maximum ground 

acceleration, which is often used for very stiff buildings, or the spectral ground acceleration in the first 

eigenmode, which is used for structures dominated by the first mode. For deeper investigation, 12 different 

IMs were selected, which are listed in Table 1. The selection was made to include all different types of IMs: 

acceleration-, displacement-, and velocity-based IMs as well as spectral- and energy-based IMs. 

Table 1: Investigated seismic intensity parameters 
IM Name Reference 

𝑷𝑮𝑨 = 𝒎𝒂𝒙 (|𝒂(𝒕)|) Peak ground 

acceleration 

 

𝒗𝒓𝒔 = √∫ 𝒗𝟐
𝒕𝒎𝒂𝒙

𝟎

(𝒕)𝒅𝒕 

Root square velocity  

𝑪𝑨𝑽 = ∫ [𝒂(𝒕)]𝒅𝒕
𝒕𝒎𝒂𝒙

𝟎

 
Cumulative absolute 

velocity 

 

𝑺𝒂𝒂𝒗𝒈(𝒄𝟏𝑻𝟏, … , 𝒄𝒏𝑻𝟏) = (∏𝑺𝒂(𝒄𝒊𝑻𝟏)

𝑵

𝒊=𝟏

)

𝟏 𝑵⁄

 

Geometrical Mean of 

Sa 

𝑐1 = 0,1 𝑢𝑛𝑑 𝑐𝑛 = 2 

(Eads et al. 2015) 

𝑫𝒔 Significant duration  

𝑰𝒂 =
𝝅

𝟐𝒈
∫ [𝒂(𝒕)]𝟐𝒅𝒕
𝒕𝒎𝒂𝒙

𝟎

 
Arias Intensity  

𝑺𝒂(𝑻𝟏) Spectral acceleration 

in the first eigen 

period 

 

𝒅𝒔𝒒 = ∫ 𝒅𝟐
𝒕𝒎𝒂𝒙

𝟎

(𝒕)𝒅𝒕 
Squared displacement  

𝑬𝒊𝒏𝒑 =
𝟏

𝟐
𝒎𝒗𝒕

𝟐 +∫𝒄𝒗 du + ∫𝒇𝒔 du 
Spectral Energy in the 

first eigen period 

(Lönhoff et al. 

2017) 

𝑭𝑰𝑽 = 𝐦𝐚𝐱{𝑽𝒔,𝒎𝒂𝒙𝟏 + 𝑽𝒔,𝒎𝒂𝒙𝟐
+ 𝑽𝒔,𝒎𝒂𝒙𝟑,|𝑽𝒔,𝒎𝒊𝒏𝟏 + 𝑽𝒔,𝒎𝒊𝒏𝟐 + 𝑽𝒔,𝒎𝒊𝒏𝟑,|} 

𝑽𝒔(𝒕) = {∫ �̈�𝒈𝒇(𝝉)𝒅𝝉
𝒕+𝜶𝑻𝒏
𝒕

, ∀𝒕 < 𝒕𝒆𝒏𝒅 − 𝜶𝑻𝒏}, 

Filtered Incremental 

Velocity 

(Dávalos und 

Miranda 2019) 

𝑺∗ = 𝑺𝒂(𝑻𝟏) [
𝑺𝒂(𝟐𝑻𝟏)

𝑺𝒂(𝑻𝟏)
]

𝟎.𝟓

 
𝑺∗ (Cordova et al. 

2001) 

𝑺𝑵𝟏 = 𝑺𝒂(𝑻𝟏)
𝜶 ⋅ 𝑺𝒂(𝑪𝑻𝟏)

𝟏−𝜶 

with 𝐜 = 𝟏, 𝟓𝟎 𝐚𝐧𝐝 𝜶 = 𝟎, 𝟓 

𝑺𝑵𝟏 (Lin et al. 2011) 

𝑺𝑰𝒂,𝒗,𝒅 =

{
 
 

 
 

𝟏

𝟎. 𝟏𝟓𝟕
𝑺𝑰𝑯(𝜷, 𝟎. 𝟎𝟐𝟖, 𝟎. 𝟏𝟖𝟓); 𝑻 ∈ [𝟎. 𝟏𝟏𝟖, 𝟎. 𝟓]𝒔

𝟏

𝟏. 𝟕𝟏𝟓
𝑺𝑰𝑯(𝜷, 𝟎. 𝟐𝟖𝟓, 𝟐); 𝑻 ∈ [𝟎. 𝟓𝟎𝟎, 𝟓]𝒔

𝟏

𝟖. 𝟑𝟑𝟑
𝑺𝑰𝑯(𝜷, 𝟒. 𝟏𝟔𝟕, 𝟏𝟐. 𝟓𝟎𝟎); 𝑻 ∈ [𝟓. 𝟎𝟎, 𝟏𝟒. 𝟎𝟖𝟓]𝒔

 

𝑺𝑰𝒂,𝒗,𝒅 (Nau und Hall 

1984) 
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RESULTS 

 

First, as part of pre-processing, the created dataset was Box-Cox transformed (G. E. P. Box und D. 

R. Cox 1964) and then scaled between 0 and 1 to obtain a better normally distributed dataset, which is a 

prerequisite for most machine learning models. The dataset was randomly divided into 20% test, 20% 

validation, and 80% training data. An ANN was created with two hidden layers of 12 neurons each. For 

optimization, the Levenberg-Marquardt Algorithm (Hagan und Menhaj 1994) was used in combination 

with a Sigmoid activation function. The ANN was then trained for each structure separately and analysed 

using the permutation method previously described in chapter 3. Sensitivity Analysis. 

Figure 3 shows the regression plot of the trained ANN. These contrasts, for a test data set, the predicted 

Park-Ang with those previously calculated in the FE model. The coefficient of determination is in average 

95,4%. 

 
Figure 3:Regression plot ANN test data 

 

The results of the sensitivity analysis of the trained ANN using the Permutation Intensity is listed in Table 

2 for each structure separately. While the results of both methods structural independent are represented in 

Table 3. Differences between the ranking of the IMs for each structure can be recognized. Also, it is clear 

which IMs are always highly ranked, namely Root Squared Velocity, 𝑺∗, Spectral Energy, and the geometric 

mean of the Spectral Acceleration. At the same time, the IMs where the ANN reacted low sensitive to 

changes were mostly PGA, CAV and significant duration. The sensitivity to 𝑺∗ Spectral Energy reduces for 

softer structures, while the sensitivity to 𝑭𝑰𝑽 seems to change independently. Since the training of an ANN 

always contains randomness in weights and bias, the results can change on each run. While this influenced 

the IMs with medium rank, the highest and lowest-ranked IMs stays constant. 

Instead of training the ANN on each structure separately, all structures can be combined in one dataset if 

structural parameters are added to the input data. This can be achieved for example by adding the 

eigenfrequency of the structure. Again, the ANN is trained and a sensitivity analysis is applied. The results 

are shown in Table 3. It can be seen, that again, the ANN reacts most sensitive to changes of Root Squared 

Velocity. 

Since the ranking of IMs represents the sensitivity of the ANN to predict the target data, also the second-

ranked IM is of interest. This could be used for vector IMs.  
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Rank 2 Stories 4 Stories 6 Stories 8 Stories  Rank 
Permutation 

Importance 

Partial 

Derivative 

1 𝑺∗ 𝒗𝒓𝒔 𝒗𝒓𝒔 𝒗𝒓𝒔  1 𝒗𝒓𝒔 𝒗𝒓𝒔 

2 𝒗𝒓𝒔 𝑺∗ 𝑺𝑰𝒂,𝒗,𝒅 𝑺𝑰𝒂,𝒗,𝒅  2 𝑺∗ 𝑺∗ 

3 𝑬𝒊𝒏𝒑 𝑬𝒊𝒏𝒑 𝑺𝒂𝒂𝒗𝒈 𝒅𝒔𝒒  3 𝑬𝒊𝒏𝒑 𝑭𝑰𝑽 

4 𝑭𝑰𝑽 𝑭𝑰𝑽 𝑺∗ 𝑺∗  4 𝑺𝒂𝒂𝒗𝒈 𝑺𝒂𝒂𝒗𝒈 

5 𝒅𝒔𝒒 𝑰𝒂 𝑬𝒊𝒏𝒑 𝑺𝒂𝒂𝒗𝒈  5 𝑭𝑰𝑽 𝑺𝑰𝒂,𝒗,𝒅 

6 𝑺𝒂𝒂𝒗𝒈 𝑪𝑨𝑽 𝑺𝑵𝟏 𝑬𝒊𝒏𝒑  6 𝑺𝑰𝒂,𝒗,𝒅 𝒅𝒔𝒒 

7 𝑪𝑨𝑽 𝑺𝑵𝟏 𝑫𝒔 𝑭𝑰𝑽  7 𝒅𝒔𝒒 𝑺𝑵𝟏 

8 𝑺𝑵𝟏 𝑫𝒔 𝑰𝒂 𝑺𝑵𝟏  8 𝑺𝑵𝟏 𝑫𝒔 

9 𝑰𝒂 𝑺𝒂𝒂𝒗𝒈 𝒅𝒔𝒒 𝑫𝒔  9 𝑰𝒂 𝑬𝒊𝒏𝒑 

10 𝑷𝑮𝑨 𝒅𝒔𝒒 𝑭𝑰𝑽 𝑪𝑨𝑽  10 𝑪𝑨𝑽 𝑰𝒂 

11 𝑺𝑰𝒂,𝒗,𝒅 𝑺𝑰𝒂,𝒗,𝒅 𝑷𝑮𝑨 𝑰𝒂  11 𝑫𝒔 𝑪𝑨𝑽 

12 𝑫𝒔 𝑷𝑮𝑨 𝑪𝑨𝑽 𝑷𝑮𝑨  12 𝑷𝑮𝑨 𝑷𝑮𝑨 

Table 2: Ranking of the IMs for each Structure  Table 3: Ranking for the IMs for 

an ANN with Structural Input 

 

CONCLUSION 

 

The search for a suitable seismic intensity parameter has occupied earthquake engineers for several 

years. In the process, the IMs developed became more and more complex and were increasingly developed 

only for specific building classes. The use of ANNs instead of linear models has been increasingly 

investigated in recent years. The higher accuracy of these could also be shown in this work. By applying 

sensitivity analysis to ANNs, a statement can be made about the weighting of the IMs within the input data 

of the ANNs. Different methods of sensitivity analysis for ANNs were applied and the results were 

compared, showing that in all methods the IM Root Squared Velocity receives the best ranking. A larger 

dataset of IMs as well as structural parameters will be investigated for further studies.  

Both sensitivity Approaches have its advantages. The partial derivative approach allows, compared 

to Garson’s methodology (Ghanizadeh et al. 2020) the application to ANN with two hidden layers. This 

ANN design allows a more robust interpretation of the problem. The permutation impotence in comparison 

can be applied to any other model and is due to this, widely used and accepted. 
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