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Abstract 

 

The purpose of this study is to perform seismic fragility assessments of the reactor containment building 

(RCB) in the Advanced Power Reactor 1400 (APR-1400) nuclear power plants (NPPs) with the aid of 

Bayesian-Markov Chain Monte Carlo (MCMC) simulation. Fragility is a pivotal component of seismic 

performance that expresses the relationship between a ground motion intensity and the engineering demand 

parameter. The accurate estimation of fragility normally requires a large number of nonlinear time history 

analyses that spend inevitably significant computational time. The current study employed Bayesian 

inference combined with MCMC simulations to overcome this issue for RCB structures. The framework 

requires a prior belief (e.g., fragility curve) that can be obtained from engineering judgment, experiences, 

previous studies, or simplified linear models. After that, a few nonlinear time history analyses are performed 

to update the prior belief and then achieve posterior fragility curves. The findings show that Bayesian 

inference and MCMC simulation can significantly improve the fragility curves of various damage states. 

 

INTRODUCTION 

 
In probabilistic seismic evaluations, a fragility curve represents the probability of failure in relation to an 

intensity measure such as peak ground acceleration (PGA). It is widely used in many standards as well as 

the Nuclear Regulatory Commission of the United States (NRC). Several approaches for developing 

seismic fragility curves have been proposed. Shinozuka et al. (2000) presented a maximum likelihood 

estimate approach, while Elingwood et al. (2002) proposed an incremental dynamic analysis method. 

Multiple-strip (Iervolino et al. 2010) and cloud methods (Jalayer et al, 2014) were also employed to derive 

the seismic fragility curves of structures. These approaches, however, are computationally expensive and 

necessitate extensive time-history research. For a simplified lumped mass stick model (LMSM), performing 

a large number of time history analysis is convenient. In the case of full three-dimentional finite element 

model (3D FEM) or multilayer shell element model (MSLM) of the reactor containment building (RCB) in 

nuclear power plants (NPPs), however, it is quite impractical to perform numerous time history analyses. 

Nguyen et al. (2021) recently recommended the beam-truss model (BTM) for containment building of 

NPPs, which is a simplified yet adequately detailed model. In comparison to the full 3D FEM model, the 

BTM  is efficient enough in terms of simplification and capturing nonlinear behaviours. The RCB model is 

still expensive when undertaking a large number of nonlinear time-history analyses for developing fragility 

curves. To address these challenges, several researchers attempted to estimate the parameters of seismic 

fragility curves using Bayesian inference techniques. It is possible to anticipate the accurate estimation of 
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different parameters using Bayesian inference with a smaller amount of data. Based on Bayesian inference, 

Alam et al. (2017) developed seismic fragility curves for intake towers. Tadinada and Gupta (2020) applied 

the technique to a box-shaped concrete wall. Pujari and Ghosh (2014) performed seismic fragility tests on 

nuclear containment buildings. However, those researches were confined to the development of fragility 

curves for a specific damage state, namely collapse. However, fragility curves for other damage states such 

as cracking, yielding, and so on must be developed to have proper inspection and maintenance planning. In 

this study, we apply the Bayesian inference with Markov Chain Monte Carlo (MCMC) technique to 

estimate the fragility parameters for four different damage states, including cracking, yielding, extensive 

cracking, and crushing, of the Advanced Power Reactor 1400 (APR-1400) containment building. Prior 

fragility curves of different damage states are required for Bayesian inference, and these are approximated 

by the RCB's LMSM. Following that, 50-time history analyses are performed, with the BTM used to capture 

nonlinearity of the structure. The prior fragility curves are updated, and the posterior fragility curve are 

constructed, using this 50-time history analysis. The posterior fragility curves are the final fragility curves 

that take into account the RCB structure's nonlinearity as well. 

 

DESCRIPTION OF THE MODEL 

 

For the numerical studies in this work, the reinforced concrete (RC) containment building of the APR 1400 

NPPs is used. The RCB structure is a cylinder building with a radius of 23.5 m, a height of 54 m, and a 

thickness of 1.22 m. The dome's radius is 23.2 m, as well as its average thickness is 1.07 m. Figure 1 (a) 

depicts the RCB structure and the wall reinforcement detailing.  

 

 
Figure 1. a) Dimension of RCB, b) BTM of RCB, c) horizontal beams, d) vertical beams, e) diagonal 

truss members 

 

It was noted that LMSM is a simplified method that is insufficient for nonlinear analysis, whereas 

3D FEM and MLSM need extremely expensive computations (Nguyen et al., 2021). Therefore, BTM is a 

reasonably simple and efficient model for performing nonlinear analysis when compared to these models, 

and it is used in this study to develop a numerical model of RCB. The detailed advantages of BTM were 

discussed in Nguyen et al. (2021). The dimension of the panel is determined by the mesh convergence test, 

which determines the dimensions of the beam and truss elements. The horizontal and vertical elements are 
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both 1.0 m long. The diagonal members are modelled as truss elements, whereas the horizontal and vertical 

elements are modelled as nonlinear beam elements. The width of the beam elements is equal to the wall 

thickness, i.e., 1.22 m, whereas the height of the beams is determined by the panel size. Besides, the width 

of the diagonal truss elements (b) is computed as the product of the length of the panel (a) and sin(𝜃d), as 

shown in Equation (1).  

 

𝑏 = 𝑎 × sin (𝜃𝑑)      (1) 
 

where 𝜃d is the angle between the diagonal and the horizontal elements. The BTM of RCB is modeled using 

OpenSees (Mazzoni et al., 2006), as shown in Figure 1(b). The forceBeamColumn elements are used to 

construct the beam elements. The diagonal truss members are built using the corotTruss elements. The 

vertical and horizontal beam elements are modelled with concrete and reinforcements included, while the 

diagonal truss elements exhibit purely concrete behaviour. Nonlinear material models are employed to 

develop beam and truss elements. Concrete and reinforcing bars are modelled using the concrete02 and 

steel02 models, respectively. The approach described above is also consistent with the study of Lu and 

Panagiotou (2014). The illustrated modelling of the RCB wall using BTM is shown in Figures 1 (b-e). 

Figure 2 depicts the concrete02 and steel02 models. The relevant properties of concrete and steel are taken 

from Nguyen et al. (2021).  

 

 
Figure 2. (a) Concrete02 and (b) steel02 models 

 
SEISMIC FRAGILITY 

 
The fragility curve is a practical tool to assess the probabilistic vulnerability of structures subjected to 

seismic loadings. Damage states should be defined to develop the fragility curves. The damages states are 

estimated following the methodology of Nguyen et al. (2021) in this study. Four damage states are 

considered, which are minor (i.e., concrete cracking, referred to as DS1), moderate (i.e., rebar yielding, 

referred to as DS2), extensive (i.e., extensive cracking and yielding at the bottom, referred to as DS3), and 

collapse (i.e., crushing, referred as DS4). For a particular damage state, the fragility curves can be estimated 

following Equation (2). 

 

𝐹(𝑥; 𝜇, 𝜎𝑅) = ϕ[
ln (𝑥/𝜇)

𝜎𝑅
]                                                   (2) 

 

where 𝜙(.) denotes the standard normal cumulative distribution function (CDF), x is intensity measure 

(IM), 𝜇 is the median value of the distribution function, and 𝜎𝑅  denotes the logarithmic standard deviation 

or dispersion of 𝑙𝑛(𝐼𝑀). 
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BAYESIAN INFERENCE 

 

Bayesian inference is an effective way to accurately estimate parameters by updating prior information with 

newly observed data. The seismic fragility of any structure can be updated through updating its parameters, 

θ(μ, σR) employing Bayesian inference. The seismic fragility  can be updated following Equation (3), as 

shown below 

 

𝑓𝞗
′′(𝜃|𝑌) =

𝑃(𝑌|𝜃)𝑓𝞗
′(𝜃)

𝑃(𝑌)
                                                                 (3) 

 

where 𝑓𝞗
′(𝜃) is the prior information/ Belief that is approximated from the LMSM model of the RCB;  

 𝑃(𝑌|𝜃) is the likelihood of the observation 𝑌 that can be obtained by performing nonlinear time 

history analysis of the BTM of the RCB; 

 𝑃(𝑌) is the marginal likelihood. 

 𝑓𝞗
′′(𝜃|𝑌) is the updated/posterior fragility curve. 

 

At first, the prior parameters are derived from the LMSM model employing cloud analysis method 

(Jalayer et al., 2014) following the procedure of Figure 3. The LMSM model is developed and 90 ground 

motions are chosen based NRC spectra, as described in Nguyen et al. (2021). A regression analysis is done 

to estimate the parameters of the prior fragility curve and the fragility curves are plotted for four damage 

states. From the analysis using LMSM, μ and σR are computed.  

 

 

 
 

Figure 3. Prior fragility curves of RCB 

 

As the seismic fragility is a function that includes the median (μ) and the standard deviation (σR), 

both parameters are needed to be updated through the inference. We can assign 𝜃1 for median acceleration 

(μ) and 𝜃2 for the standard deviation (σR). 𝜃1 has a prior normal distribution with mean, log(μ) and standard 

deviation, σU (i.e., epistemic uncertainty). In addition, 𝜃2 is considered as uniformly distributed within 

±15% of its mean value σR according to Tadinada and Gupta (2020). The observations (Y) can be obtained 

as the engineering demand parameter from the nonlinear time history analysis of the RCB. Hence, the 

Bayesian inference is incorporated following the Equations (4-6). The value of the prior parameters are 

illustrated in Table 1. 

 

𝑝(𝑌|𝜃1, 𝜃2)~ 𝑁𝑜𝑟𝑚𝑎𝑙(𝜃1, 𝜃2)                                     (4) 

𝑝(𝜃1; 𝜇, 𝜎𝑈) ~ 𝑁𝑜𝑟𝑚𝑎𝑙(𝑙𝑜𝑔 (𝜇), 𝜎𝑈)    (5) 

𝑝(𝜃2) ~ 𝑈𝑛𝑖𝑓𝑜𝑟𝑚(0.85𝜎𝑅 , 1.15𝜎𝑅)     (6) 
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Table 1: Values of different parameters of the prior fragility curve. 

 

Parameters Value Source 

Mean of the median capacity, μ 

DS-1: 0.129g 

Estimated from LMSM model of 

RCB 

DS-2: 0.514g 

DS-3: 3.106g 

DS-4: 4.945 

Standard deviation of the median 

capacity, 𝜎𝑈 
0.27 Pujari and Ghosh (2014) 

Standard deviation of the fragility 

curve, 𝜎𝑅 
0.21 

Estimated from LMSM model of 

RCB 

 

 

The observations (Y) are obtained from the 50-time history analyses of RCB. The selected ground 

motions are scaled considering NRC spectra, as shown in Figure 4. The posterior fragility curves 𝑓𝞗
′′(𝜃|𝑌) 

are estimated through numerical simulations generating a large number of samples by employing MCMC 

simulation (Congdon, 2006). The application of MCMC is necessary since we didn’t use a conjugate prior 

for 𝜃2. In addition, the posterior distribution is not always tractable by analytical solution. Sampling the 

distribution enables easeness to find the value of  parameter with highest frequency. Markov Chain provides 

a transition from one state to other state in such a way that the current state depends on the previous state. 

Metropolis-Hastings (MH) algorithm is one of the widely used types of MCMC method that draw samples 

from a target distribution. While there is more than one parameter, the sampling process is incorporated 

through Gibbs sampling which is a special case of MH algorithm. The steps of posterior sampings are 

briefly presented below. 

 

1. At initial stage (t=0), set (𝜃1
0 or 𝜃2

0) with some starting value.  

2. At iteration 1 (t=1) 

a. Sample 𝜃1
1~𝑝(𝜃1|𝜃2

0), that is from the condition distribution (𝜃1|𝜃2) = 𝜃2
0; Hence the 

current state is (𝜃1
1, 𝜃2

0). 

b. Sample 𝜃2
1~𝑝(𝜃2|𝜃1

1), that is from the condition distribution (𝜃2|𝜃1) = 𝜃1
1; Hence the 

current state is (𝜃1
1, 𝜃2

1). 

 

3. At iteration 1 (t=2) 

a. Sample 𝜃1
2~𝑝(𝜃1|𝜃2

1), that is from the condition distribution (𝜃1|𝜃2) = 𝜃2
1; Hence the 

current state is (𝜃1
2, 𝜃2

1). 

b. Sample 𝜃2
2~𝑝(𝜃2|𝜃1

2), that is from the condition distribution (𝜃2|𝜃1) = 𝜃1
2; Hence the 

current state is (𝜃1
2, 𝜃2

2). 

4. We have to repeat it for 50000 times (t=50000) and the final stage will be (𝜃1
𝑡 , 𝜃2

𝑡). 

 

  

 

 



 

26th International Conference on Structural Mechanics in Reactor Technology 

Berlin/Potsdam, Germany, July 10-15, 2022 

Division V  

 
Figure 4. Response spectra of ground motions to update the prior fragility curve 

 

 

RESULTS AND DISCUSSION 

 

In the nonlinear RCB model, 50-time history analyses are employed to update the previous fragility 

parameters (μ, σR). Figure 5 shows the updated distributions of parameters obtained by running 50,000 

MCMC simulations with a burn-in of 1,000 to eliminate the influence of autocorrelation. The prior and 

posterior parameters have a considerable difference. The distribution of μ is shifted to a higher value for 

DS-1. After updating DS-2, there is a slight difference from the previous version. However, there is a major 

shift for DS-3 and DS-4. Based on the definition of the damage states, DS-1, DS-3 and DS-4 are governed 

by the concrete characteristics. DS-2 is dominated by reinforcing steel behaviour. It's understandable that 

the nonlinear characteristic of concrete and steel is reflected in the update of the fragility curves. The update 

of σR can also be seen in the figure. 

 

 Using the updated fragility parameters, Figure 6 compares the prior and posterior fragility curves. 

The fragility curve for DS-1 shows a minor change and the fragility curve for DS-2 shows a small change. 

However, there is a significant difference in the fragility curves of DS-3 and DS-4. Because extensive 

cracking and crushing occur within the nonlinear region of the stress-strain behaviour of concrete, the 

changes in DS-3 and DS-4 demonstrate the inclusion of highly nonlinear concrete behaviour in the RCB 

structure. Furthermore, concrete cracking causes nonlinear behaviour in the material, resulting in a minor 

shift in the updated fragility curve. DS-2 is characterized by the yielding of reinforcement steel and a slight 

update in the fragility curve for DS-2 is reported. 

0

0.5

1

1.5

2

2.5

3

3.5

4

0.1 1 10 100

S
p

ec
tr

al
 A

cc
el

er
at

io
n
 (

g
)

Frequency (Hz)

Average spectrum

NRC 1.6 spectrum



 

26th International Conference on Structural Mechanics in Reactor Technology 

Berlin/Potsdam, Germany, July 10-15, 2022 

Division V  

 
Figure 5. Updated distributions of parameters (μ and σR) at different damage states 

 
 

 

 
Figure 6. Prior and posterior fragility curves 
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CONCLUSION 

 

Bayesian inference with MCMC simulation is employed to construct fragility curves of the RCB structure. 

Initially, prior fragility curves are developed using LMSM and updated it using nonlinear time history 

analyses in BTM of RCB. The following conclusions  can be drawn: 

1. Bayesian inference with MCMC simulations is proposed to develop fragility curves with reduced 

number of time history analyses. Fragility curves for four different damage states are constructed 

through the framework. 
2. The updated fragility curves reflect the nonlinear characteristics of concrete and steel. 
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