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ABSTRACT 

A multivariate Bayesian meta-model of the seismic-induced demand is developed, which is based on the 
generalized MOCABA framework, see Hoefer & Buss (2021). The MOCABA framework was originally 
developed for application to functions of nuclear data (e.g. reactor power distribution). 

The seismic demand experienced by a component is the basis for quantifying the fragility of a 
component, i.e. the probability of the demand exceeding the capacity. In the present study the components 
of interest are fuel assemblies of a PWR. The seismic demand is characterized by the permanent 
deformations of fuel assembly spacer grids. The seismic loading is characterized by  a set of 13 seismic 
intensity measures, including the peak ground acceleration (PGA), Arias intensity, cumulative absolute 
velocity, strong motion duration, and spectral accelerations (as well as integrals thereof, see Figure 1), 
which are the input parameters. The dataset for training and testing of the meta-model is based on 180 
ground motion time histories generated within the EURATOM R&D program "NARSIS", covering a wide 
range of seismic intensity, see NARSIS (2019). 

In the generalized MOCABA framework the user can choose from different multivariate 
probability distribution models. The present study is focusing on distribution models involving log-normal, 
log-Johnson and log-empirical distributions (see Hoefer & Buss (2021) for details). So far, the MOCABA 
meta-model has been applied to a censored dataset of size 116, where the samples leading to zero permanent 
deformation are screened out. The demand distributions predicted by the meta-model are, therefore, 
conditional on the assumption of non-zero deformation. 

INTRODUCTION 

Row models of fuel assemblies are widely used to demonstrate adequate performance of fuel assemblies 
in light water reactors, as requested in the context of seismic design or beyond-design safety evaluations. 
The main purpose of the model is to capture the seismic loading experienced by fuel assemblies in the form 
of impacts, either with neighboring fuel assemblies or – in case of fuel assemblies along the edge of the 
core - with the core baffle. For the safety demonstration, the key output quantity is the predicted permanent 
deformation of the spacer grids. More specifically the deformation is limited to levels for which a 
disturbance of the control rod insertion in case of a reactor trip is excluded. 

The computational cost of the non-linear time-history analyses with the row models is inherently 
high. On the other hand, a large number of analyses is needed in the context of seismic safety. Firstly, 
analyses should be performed for various core configurations, accounting for different fuel assemblies and 



26th International Conference on Structural Mechanics in Reactor Technology 
Berlin/Potsdam, Germany, July 10-15, 2022 

Division V

spacer grid properties. Secondly, fragility curves used for SMA and seismic PSA cover a wide range of 
ground motion levels. For components analyzed by linear models, the extrapolation to higher ground 
motion levels – as utilized in the standard fragility analysis based on the scaling factor concept - can be 
justified. However, for non-linear models the availability of analysis results for various ground motion 
levels is definitely preferable. Thirdly, the effects of seismic ground motions on mechanical components 
does not depend exclusively on a single ground motion parameter, such as the peak ground acceleration 
(PGA) that is commonly used as the independent variable in standard fragility analysis. Other seismic 
intensity measures (IM) can be equally or even stronger correlated with seismic-induced damage. 

Under these circumstances, it makes sense to scrutinize alternative meta-models for their potential 
benefits and limitations in supporting safety studies. Meta-models capture the relationship between input 
variables (→ seismic intensity measures) and output variables (→ permanent spacer grid deformation). In 
the present paper, a multivariate Bayesian meta-model is used, which is based on the so-called generalized 
MOCABA framework, see Hoefer & Buss (2021). The MOCABA framework was originally developed for 
application to functions of nuclear data (e.g. reactor power distribution). 

DESCRIPTION OF THE DATASET 

The present section describes the input and output data forming the dataset used to train and test the 
MOCABA meta-model. Similar datasets have been used in Altieri et. al. (2020) and Pellissetti et.al. (2021).   

Input data

The raw input data are represented by 180 ground motion time histories, grouped in six batches of 30 time 
histories. The corresponding response spectra are shown in Figure 1 (left part). Each batch corresponds to 
a seismic intensity range, as suggested by the different colors. Regarding the procedure for the generation 
of the ground motion time histories it is referred to NARSIS (2019).  

Figure 1. Left: Ground motion response spectra for direction X, D=5% - all 180 accelerograms; Right: 
Fuel assembly row model 

The time histories have been processed to produce seismic intensity measures (IM), as compiled in 
Table 1 below. To begin with, distinct IMs are obtained for each directional component (two horizontal 
and one vertical). The final input data for the meta-model are then obtained by taking, for each IM, the 
geometric mean of the corresponding IM for the two horizontal directions. 
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Table 1: IM considered in the present study 

1 PGA peak ground acceleration 

2 PGV peak ground velocity 

3 PGD peak ground displacement 

4 IA Arias intensity 

5 CAV cumulative absolute velocity 
6 SA1 spectral acceleration at 1.3 Hz (close to the first frequency of the FA) 

7 SA1,avg average of the spectral acceleration between 1.3 and 2.4 Hz 

8 SVr1 spectral relative velocity at 1.3 Hz 

9 SVr1,avg average of the spectral relative velocity between 1.3 and 2.4 Hz 

10 AV ratio PGA/PGV 

11 SA3 spectral acceleration at 4.9 Hz (close to the third frequency of the FA) 

12 TSM,F duration of the strong motion (French definition, T95-T5) 

13 TSM,US duration of the strong motion (US definition, T75-T5) 

Output data

Each of the 180 sets of ground motion time histories is propagated a.) through a building model and b.) 
through a fuel assembly row model as shown in Figure 1 (right part). The analysis is simplified, in the sense 
that the building time histories at the reactor pressure vessel support level are applied directly to the row 
model, without considering the dynamic behavior of the RPV internals. The fuel assembly row model is 
similar to the one presented in Pellissetti et.al. (2017). See also NARSIS (2019). 

The fuel assembly row model predicts the permanent spacer grid deformation for each of the eight 
spacer grids (→ springs in Figure 1) along each of the fuel assemblies (→ beam elements in Figure 1). The 
full data set includes – for each time history – a total of 64 spacer grid deformation data: 8 spacer grids per 
fuel assembly, 2 directions, 2 fuel assemblies (the ones at the edge of the row, next to the core shroud), 2 
different row models (one with 13 fuel assemblies, the other one with 17). The data of the present study 
refer to spacer grid 5 (from the top; the spacer grids 4 and 5 experience the strongest impact and hence the 
largest deformations), arithmetic average of directions X and Y, fuel assembly left, along the baffle, row 
model with 17 fuel assemblies. This location is considered, since it can be equipped with a rod cluster 
control assembly, and can experience significant grid deformation. 

DESCRIPTION OF THE BAYESIAN META MODEL 

Mathematical framework

The Bayesian meta-model considered in this paper is based on the generalized MOCABA framework 
described in Hoefer & Buss (2021). Its objective is to map input parameter values (e.g., the values of the 
13 seismic intensity measures in Table 1) onto the corresponding values of related response variables
(e.g., variables describing permanent spacer grid deformations of fuel assemblies in a reactor core). Using 
the same notation as in Hoefer & Buss (2021), the response variables are identified with the components 
of a vector 𝒚𝐴, and the input parameters are identified with the components of a vector 𝒚𝐵. Collecting 𝒚𝐴
and 𝒚𝐵  in a combined vector 𝒚 = (𝒚𝐴

𝑇 ,𝒚𝐵
𝑇)𝑇 = (𝑦1, … 𝑦𝑛)𝑇, the prior probability density function (pdf) 𝑝(𝒚)

of 𝒚 is parameterized as follows: 
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𝑝(𝒚) ∝ exp (−
𝑄0
2
) |∏

𝜕𝑓𝑖(𝑦𝑖)

𝜕𝑦𝑖

𝑛

𝑖=1
| , 𝑄0 = (𝒇(𝒚) − 𝒛0)𝑇𝚺0

−1(𝒇(𝒚) − 𝒛0) (1)

Here, 𝒇 represents a vector of invertible variable transformations that maps the components of the 
vector 𝒚 onto the components of a transformed vector 𝒛: 

𝒛 = (𝒛𝐴
𝑇 , 𝒛𝐵

𝑇)𝑇 = (𝑧1, … , 𝑧𝑛)𝑇 = 𝒇(𝒚) = (𝑓1(𝑦1), … ,𝑓𝑛(𝑦𝑛))
𝑇

𝒚 = (𝒚𝐴
𝑇 ,𝒚𝐵

𝑇)𝑇 = (𝑦1, … ,𝑦𝑛)𝑇 = 𝒇−1(𝒛) = (𝑓1
−1(𝑧1), … , 𝑓𝑛

−1(𝑧𝑛))
𝑇

(2)

Within this framework, the transformed vector 𝒛 follows a multivariate normal distribution, 
defined by the mean vector 𝒛0 and the covariance matrix 𝚺0. Hence, 𝒚 is described by a distribution model
defined by the mean vector 𝒛0, the covariance matrix 𝚺0, and by the transformation parameters defining 
the transformation vector 𝒇. Since the physical input parameters and response variables considered in this 
paper (represented by the components 𝑦𝑖 of 𝒚) can only assume positive values, we consider here three 
different types of left-bounded distribution models for the components 𝑦𝑖, which are denoted as: 

 log-normal distribution model 
 log-empirical distribution model 
 log-Johnson distribution model 

These distribution models correspond to the following parameterizations of the transformations 𝑓𝑖: 

 log − normal distribution: 𝑧𝑖 = 𝑓𝑖(𝑦𝑖) = ln(𝑦𝑖 − 𝑦𝑖
𝐿) (3)

 log − empirical distribution: 𝑧𝑖 = 𝑓𝑖(𝑦𝑖) = 𝐹𝑁,𝑖
−1 (𝐹𝐸,𝑖(ln(𝑦𝑖 − 𝑦𝑖

𝐿))) (4)

 log − Johnson distribution: 𝑧𝑖 = 𝑓𝑖(𝑦𝑖) = sinh−1 (
ln(𝑦𝑖−𝑦𝑖

𝐿)−𝑎𝑖

𝑏𝑖
) (5)

Using either of these three distribution models, the domain of the pdf 𝑝(𝑦𝑖) of 𝑦𝑖 is given by 𝑦𝑖 ≥

𝑦𝑖
𝐿. For the analysis presented in this paper, a lower bound value of 𝑦𝑖

𝐿 = 0 is used. In the definition of the 
log-empirical distribution model, 𝐹𝑁,𝑖 denotes the distribution function of the normally distributed variable 

𝑧𝑖, and 𝐹𝐸,𝑖 denotes the empirical distribution function of ln(𝑦𝑖 − 𝑦𝑖
𝐿). 

In the training phase, the distribution model parameters of the prior pdf 𝑝(𝒚) are estimated from 
a database 𝑌 = {𝒚1, … ,𝒚𝑚} of 𝑚 observations of 𝒚. Using the log-empirical or log-Johnson distribution 
model, first the transformation parameters of 𝑓𝑖 are estimated from the data set 𝑌 for each component 𝑖
separately. For the log-empirical distribution model, the empirical distribution function 𝐹𝐸,𝑖 is estimated 

from the order statistics of ln(𝑦𝑖 − 𝑦𝑖
𝐿) observations. When using a log-Johnson distribution model, the 

model parameters 𝑎𝑖 and 𝑏𝑖 are fitted by maximizing the corresponding log-likelihood function (see 
Hoefer & Buss (2021)). 

Having estimated the transformations 𝑓𝑖, they are used to map the database 𝑌 of observations of 𝒚
onto a database 𝑍 = {𝒛1, … , 𝒛𝑚} of observations of 𝒛. Since the transformations 𝑓𝑖  are chosen such that 𝒛
is approximately multivariate normally distributed, the mean vector 𝒛0 and the covariance matrix 𝚺0
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defining the multivariate normal pdf of 𝒛, are estimated by applying the corresponding unbiased 
estimators to the data set 𝑍: 

𝒛0 = (
𝒛0𝐴
𝒛0𝐵

) =
1

𝑚
∑ 𝒛𝑗

𝑚

𝑗=1
, 𝚺0 = (

𝚺0𝐴 𝚺0𝐴𝐵
𝚺0𝐴𝐵
𝑇 𝚺0𝐵

) =
1

𝑚 − 1
∑ (𝒛𝑗 − 𝒛0)(𝒛𝑗 − 𝒛0)

𝑻𝑚

𝑗=1
. (6)

Within the considered Bayesian framework, the choice of a given input parameter vector and its 
uncertainty are expressed in terms of a multivariate normal likelihood function: 

𝑝(𝒗𝐵|𝒚𝐵) ∝ exp(−𝑄𝑉 2⁄ ), 𝑄𝑉 = (𝒚𝐵 − 𝒗𝐵)𝑇𝚺𝑉𝐵
−1(𝒚𝐵 − 𝒗𝐵). (7)

Here, 𝒗𝐵  represents the best estimate of the input parameter vector 𝒚𝐵, and its uncertainty is 
represented by the covariance matrix 𝚺𝑉𝐵. Following the same procedure as described in Hoefer & Buss 
(2021), the uncertainty of the input parameter vector is taken into account by drawing Monte Carlo samples 

𝜹𝑗
𝑀𝐶  (𝑗 = 1, … ,𝑚) from the multivariate normal pdf 𝑁(𝟎,𝚺𝑉𝐵) and subsequently replacing 𝒚𝐵,𝑗 by 𝒚𝐵,𝑗 +

𝜹𝑗
𝑀𝐶  within the database 𝑌 before estimating the model parameters of the prior pdf 𝑝(𝒚). 𝒗𝐵  is then mapped 

onto the best estimate 𝒘𝐵 = 𝒇(𝒗𝐵) of the transformed vector 𝒛𝑩. 

Subsequently, 𝒘𝐵 is mapped onto the transformed response vector 𝒛𝐴
∗  by applying the updating 

formulas of the basic MOCABA framework (see Hoefer & Buss (2021)): 

𝒛𝐴
∗ = 𝒛0𝐴 + 𝚺0𝐴𝐵(𝚺0𝐵 + 𝚺𝑉𝐵)−1(𝒘𝐵 − 𝒛0𝐵) (8)

𝚺𝐴
∗ = 𝚺0𝐴 − 𝚺0𝐴𝐵(𝚺0𝐵 + 𝚺𝑉𝐵)−1𝚺0𝐴𝐵

𝑇 (9)

Here, 𝒛𝐴
∗  and the corresponding covariance matrix 𝚺𝐴

∗  represent the model parameters of the 
multivariate normal posterior pdf 𝑝(𝒛𝐴|𝒘𝐵) of 𝒛𝐴: 

𝑝(𝒛𝐴|𝒘𝐵) = 𝑁(𝒛𝐴
∗ ,𝚺𝑨

∗ ) ∝ exp(−𝑄𝐴
∗ 2⁄ ), 𝑄𝐴

∗ = (𝒛𝐴 − 𝒛𝐴
∗ )𝑇𝚺𝐴

∗−𝟏(𝒛𝐴 − 𝒛𝐴
∗ ) (10)

The posterior pdf 𝑝(𝒚𝐴|𝒗𝐵) of the response vector 𝒚𝐴 is then obtained by applying the inverse 
transformation 𝒇−1 to the posterior pdf 𝑝(𝒛𝐴|𝒘𝐵) of the transformed response vector 𝒛𝐴. By expressing the 
information about the response vector 𝒚𝐴 conditional on the input parameter vector 𝒗𝐵 in terms of the 
posterior pdf 𝑝(𝒚𝐴|𝒗𝐵) it is possible to quantify the quantiles of the response variables for given input 
parameters. 

Generation and application of the meta model

Figure 2 illustrates the procedure for the generation and application of the considered meta model. The 
starting point is a representative database 𝑌𝐵 = {𝒚𝐵1, … ,𝒚𝐵𝑚} of observations of the input parameter 
vector 𝒚𝐵 . In the context of the seismic fragility analysis considered in this paper, the components of 𝒚𝐵
represent the seismic intensity measures in Table 1.  

To generate a database of training data for the meta model, for each observation 𝒚𝐵𝑖  of the input 
parameter vector 𝒚𝐵 , numerical computations are performed as described in the section “Dataset”. These 
simulations yield a database 𝑌𝐴 = {𝒚𝐴1, … ,𝒚𝐴𝑚} of the response vector 𝒚𝐴. Combining the databases 𝑌𝐴
and 𝑌𝐵 yields the database 𝑌 = {𝒚1, … ,𝒚𝑚} of the combined vector 𝒚 = (𝒚𝐴

𝑇 ,𝒚𝐵
𝑇)𝑇. The database 𝑌 is then 

used for training the meta model according to the procedure presented above. The trained meta model can 
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then be used to calculate in real time for a given input parameter vector 𝒚𝐵 the posterior distribution of the 
response vector 𝒚𝐴. 

Figure 2. Illustration of the procedure for the generation and application of the MOCABA meta model 

APPLICATION TO SEISMIC FRAGILITY ANALYSIS 

The described meta model procedure is now applied to a seismic fragility analysis, using a database 
of 180 observations of the 13 seismic intensity measures in Table 1 (in the following denoted as 𝑥1, … , 𝑥13) 
and the corresponding outcomes of the permanent deformation ℎ5 of a given spacer grid (spacer grid 5). 

For the training of the meta model, only those 116 samples from the original database are used that 
lead to non-zero deformations of the considered spacer grid. The reduced database is then split in half. 
The first half (sample 1, 3, …, 113, 115) represents the training data, which are used to train the meta 
model. The second half (sample 2, 4, …, 114, 116) represents the test data, which are used to test the meta 
model. Testing the meta model means to calculate the predictions of the spacer grid deformation by 
applying successively the input parameters of sample 2, 4, …, 114, 116 to the trained meta model and then 
to compare the obtained posterior distributions of the spacer grid deformation to the corresponding 
deformation values of sample 2, 4, …, 114, 116. For this analysis, the uncertainties of the input parameters 
are neglected. The meta model is considered appropriate for quantifying probabilistically spacer grid 
deformations for given input parameters if the coverage of the test data by the credible intervals of the 
posterior distribution corresponds to the respective probability content of these intervals. In addition, the 
median of the posterior distribution should be well covered by the test data. 

Figure 3 shows the matrix of Pearson correlations between the 13 seismic intensity measures in 
Table 1 and the permanent spacer grid deformation ℎ5. As can be seen, the average of the spectral 
acceleration between 1.3 and 2.4 Hz (input parameter 𝑥7) and the average of the spectral relative velocity 
between 1.3 and 2.4 Hz (input parameter 𝑥9) show the highest correlations (both 0.8) to the response 
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variable ℎ5. This means that these input parameters provide a particularly high level of information 
regarding the prediction of ℎ5. Furthermore, it can be seen that the correlations between different input 
parameters are often very high. For example, 𝑥7 and 𝑥9 have a correlation of 0.9. This means that there is 
a high degree of redundancy w.r.t. the information provided by the different input parameters regarding 
the prediction of ℎ5.

Figure 3. Matrix of Pearson correlations between the 13 seismic intensity measures 𝑥1, … , 𝑥13 and the 
permanent spacer grid deformation ℎ5

For the test of the meta model, we first take into account only a single input parameter, i.e. 
parameter 𝑥7 representing the average of the spectral acceleration between 1.3 and 2.4 Hz. The 
corresponding meta model results for the posterior distribution of the permanent spacer grid deformation 
ℎ5, obtained for the three considered distribution models, are presented in Figure 4, 5, and 6. As can be 
seen, the median values of the posterior distribution are fairly well covered by the test data for the log-
normal model and very well covered by the log-empirical and log-Johnson models. As it should be, the 1% 
and 99% quantiles of the posterior distributions cover the test data for all three distribution models. 
However, the log-normal distribution model provides overly conservative values for the 99% quantile for 
high values of 𝑥7. In this region, the 99% quantile values appear to be overestimated by almost one order 
of magnitude. In comparison to the log-normal model, the log-empirical and the log-Johnson model show 
a significantly better performance. For these models, the quantiles of the posterior distribution follow well 
the slope of the test data, and the 1% and 99% quantile values are sufficiently close to the test data. The 
reason for the significantly better performance of the log-empirical and the log-Johnson model in 
comparison to the log-normal model is that these models have more model parameters and are, therefore, 
more flexible than the log-normal model. This means that these models can be well adjusted to the training 
data. In particular, highly non-linear dependencies between input parameters and response variables can be 
well described by using log-empirical and the log-Johnson distribution models. 

Finally, we take into account all 13 input parameters for the training and testing of the meta model. 
Applying a log-Johnson distribution model, the corresponding results of the posterior distribution of the 
permanent spacer grid deformation ℎ5 is presented in Figure 7 as a function of input parameter 𝑥7. As for 
the single-input-parameter case, the median values of the posterior distribution are well covered by the test 
data. Furthermore, the test data are well covered by the intervals defined by the 1% and 99% percentiles of 
the posterior distribution, as it should be. Also, the 1% and 99% quantile values are sufficiently close to the 
test data. 

  h5                    x01                   x02                   x03                   x04                   x05                   x06                   x07                   x08                   x09                   x10                   x11                   x12                   x13                 

h5 1.0 0.6 0.7 0.5 0.7 0.7 0.6 0.8 0.7 0.8 -0.3 0.5 0.1 0.0

x01 0.6 1.0 0.7 0.3 0.8 0.5 0.5 0.6 0.6 0.7 0.2 0.9 -0.2 -0.2

x02 0.7 0.7 1.0 0.7 0.7 0.6 0.9 0.9 0.9 0.9 -0.5 0.5 0.0 -0.1

x03 0.5 0.3 0.7 1.0 0.5 0.7 0.5 0.6 0.5 0.5 -0.5 0.2 0.3 0.3

x04 0.7 0.8 0.7 0.5 1.0 0.9 0.6 0.7 0.6 0.8 -0.1 0.7 0.1 0.1

x05 0.7 0.5 0.6 0.7 0.9 1.0 0.5 0.7 0.5 0.7 -0.2 0.5 0.4 0.4

x06 0.6 0.5 0.9 0.5 0.6 0.5 1.0 0.9 1.0 0.8 -0.5 0.2 0.1 0.0

x07 0.8 0.6 0.9 0.6 0.7 0.7 0.9 1.0 0.9 1.0 -0.4 0.5 0.1 0.0

x08 0.7 0.6 0.9 0.5 0.6 0.5 1.0 0.9 1.0 0.9 -0.5 0.3 0.1 0.0

x09 0.8 0.7 0.9 0.5 0.8 0.7 0.8 1.0 0.9 1.0 -0.4 0.5 0.1 0.0

x10 -0.3 0.2 -0.5 -0.5 -0.1 -0.2 -0.5 -0.4 -0.5 -0.4 1.0 0.2 -0.4 -0.4

x11 0.5 0.9 0.5 0.2 0.7 0.5 0.2 0.5 0.3 0.5 0.2 1.0 -0.2 -0.2

x12 0.1 -0.2 0.0 0.3 0.1 0.4 0.1 0.1 0.1 0.1 -0.4 -0.2 1.0 0.8

x13 0.0 -0.2 -0.1 0.3 0.1 0.4 0.0 0.0 0.0 0.0 -0.4 -0.2 0.8 1.0
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Comparing the results for the single-input-parameter case in Figure 6 to the results for the 13-input-
parameter case in Figure 7, shows that the outcomes for the posterior distribution of ℎ5 are fairly similar
for these two cases. This could have been expected because of the high correlation between 𝑥7 and ℎ5 and 
the high correlation between 𝑥7 and other input parameters with high correlations to ℎ5 (see Figure 3). 
Because of that, input parameter 𝑥7 already provides a significant portion of the information regarding 
the prediction of ℎ5, and adding the 12 remaining input parameters does not increase the degree of 
information very much. In fact, the similar outcomes in Figure 6 and Figure 7 can be seen as a consistency 
check of the applied meta model procedure. 

Figure 4. Posterior distributions of permanent spacer grid deformation predicted by MOCABA meta-
model, using a log-normal distribution model and a single input parameter 

Figure 5. Posterior distributions of permanent spacer grid deformation predicted by MOCABA meta-
model, using a log-empirical distribution model and a single input parameter 
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Figure 6. Posterior distributions of permanent spacer grid deformation predicted by MOCABA meta-
model, using a log-Johnson distribution model and a single input parameter 

Figure 7. Posterior distributions of permanent spacer grid deformation predicted by MOCABA meta-
model, using log-Johnson distributions and 13 input parameters 

CONCLUSIONS

The presented study aims at probing the MOCABA meta-model for its applicability in the context of 
seismic safety studies.  

The analysis is based on an original data set, consisting of seismic intensity measures (→ input 
data) for 180 sets of ground motion histories and corresponding spacer grid deformations (→ output data), 
resulting from non-linear dynamic analyses. The presented meta model uses, however, only a censored
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dataset, consisting of those 116 samples from the original database that lead to non-zero deformations of 
the considered spacer grid. 

For the performance tests, the censored dataset has been divided into a training set and a test set of 
equal size. 

A general conclusion is that the MOCABA meta-model is suitable for fragility analysis because 
it can quantify the conditional probability of exceeding specific threshold values of the output parameters 
(seismic demand). 

A more technical conclusions is that tests demonstrate that the log-Johnson and log-empirical
distributions outperform the log-normal distribution. This has here been shown for models with a single 
input parameter but is generally true also for models with more input parameters. 

The meta-model based on log-Johnson and log-empirical distributions leads to significantly better
predictions of the demand distributions, especially for higher levels of ground motion. The underlying 
reason is that these distributions have more model parameters and are, therefore, more flexible than the 
log-normal model. 

NOMENCLATURE 

IM Intensity measure  
MOCABA Monte-Carlo sampling and Bayes updating  
PGA  Peak ground acceleration  
PSA  Probabilistic safety analysis  
SMA  Seismic margin assessment  
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