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ABSTRACT 

 

The Arias intensity is extensively applied as a criterion for correlating strong ground motion to 

earthquake destructiveness or structural damage. An energy-balanced index is derived and expressed in 

terms of the ground accelerogram, structural damping ratio and frequency. An investigation is performed 

for the relationships of earthquake input energy, structural kinetic energy, dissipated energy due to 

damping, and elastic strain energy based on the input of the 1940 El Centro strong earthquake motion. It 

is shown that the earthquake input energy is balanced by the structural kinetic energy plus strain energy 

instead of the dissipated energy during the strong earthquake excitation, but after the earthquake event the 

input energy is balanced by the dissipated energy due to damping for an elastic system. The derived 

intensity can be applied to determine the strong motion duration and to design seismic sensors for the 

seismic instrumentation and qualification of safety-related structures. 
 

INTRODUCTION 

 

In seismic design and qualification of safety-related structures, systems and components, it is crucial to 

determine the parameters of design-basis earthquake. In this study, energy-balanced earthquake intensity 

with energy-balanced seismic response is studied based on the Arias intensity (Arias 1970). A brief 

review of Arias intensity applications is performed first. An assessment of the derivation of Arias 

intensity is carried out to indicate that the expression of Arias intensity leads to unbalanced dissipation 

energy. Then, an expression of intensity with balanced earthquake energy is derived based on a Single 

Degree of Freedom (SDOF) structural system. Based on the derived earthquake intensity, the effect of 

upper bound frequency on the prediction of earthquake intensity is investigated. In addition, the energy-

based intensity is applied to show the energy response of seismometers. Finally, the derived intensity 

expression is applied on the 1940 El Centro acceleration time histories (Liu and Lu 2010) to study its 

strong earthquake duration. 

 

A Brief Review of Earthquake Damage Intensity 

 

Structural damage of structures subject to earthquake loading is related to seismic level or earthquake 

intensity. There are many parameters that can be used as earthquake intensity for structural damage 

measures, including peak ground acceleration (PGA), root mean square (RMS) acceleration, Housner 

intensity, peak ground velocity (PGV), peak ground displacement (PGD), spectral response acceleration 

(SRA), and Arias intensity. It is logically recognized that the energy-based intensity is much more 

meaningful because the amplitude, duration, and frequency contents of the earthquake strong motion are 

taken into account. In light of the basic assumptions for the SDOF system subjected to ground strong 
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motion, the energy-based intensity is derived in this section. It is assumed that the ground input energy is 

balanced with the damping energy that is used to characterize the structural damage. Thus, the earthquake 

input energy rather than the damping energy itself is applied for the derivation of the earthquake intensity, 

which is expressed in terms of structural frequency, damping ratio, and the time history of earthquake 

ground acceleration. 

 

Basic Assumptions 

 

It is difficult to derive a general earthquake intensity accounting for structural damage associated with 

stiffness degradation because structural failure due to plasticity should be determined on a case-by-case 

basis. Thus, a general intensity characterizing structural damage or earthquake destructiveness should 

exclude the influence of the structural plasticity (Arias 1970). The structure under consideration for the 

measure of earthquake strength must be simple and behave elastically to avoid conducting complicated 

dynamic analysis associated with geometrical and material nonlinearity. Nevertheless, a minimum of 

structural properties should be considered to obtain the measure of earthquake intensity. As a result, the 

following assumptions are made for the derivation: 

i. A structure is idealized as a SDOF system with circular frequency ranging from 0 to  of 

interest; 

ii. Structural damage degree is proportional to the dissipated energy per unit weight of the 

structure; 

iii. The dissipated energy is characterized by the viscous damping energy; 

iv. Each structure affected by the earthquake motion behaves elastically without plastic energy loss; 

and 

v. Earthquake intensity is defined as the energy dissipation accumulated in the domain of 

structural frequency.   

 

Following these assumptions, a SDOF structural system can be considered in deriving the energy-

based earthquake intensity.  

 

Concern for Arias Intensity 

 

For a SDOF system consisting of a lumped mass m, viscous damping coefficient c, and linear stiffness k, 

which is enforced by earthquake ground motion y0, the structural motion can be expressed in terms of the 

relative motion u as (Liu and Lu 2010): 

0ymkuucum  −=++                                                                     (1) 

which is used to derive the intensity. The balanced-energy equation can be defined as the work 

done by the force along the displacement u during the earthquake excitation td by integrating Equation 1 

as: 
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where , , and y0 are the viscous damping ratio, circular frequency, and base displacement for 

the SDOF system. Terms Ek, Ed, Es, and Ei in Equation 2 represent kinetic, dissipated, strain, and input 

energies, respectively. From the assumptions above, after the earthquake event, the kinetic energy Ek, and 

strain energy Es vanish or equal to zero; and the dissipated energy of the structure is equal to the 

earthquake input energy: 
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Upon using the right integral of earthquake input energy in Equation 3 and the solution of 

Equation 1, the following intensity expression has been derived (Arias 1970): 
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where the gravity constant g is omitted from the original Arias’ derivation (1970). Term Ca is a 

function of damping ratio . When the damping value  tends to zero, Equation 4 is standardized as: 

= dt
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2
0

2
)0( 


                                                                    (5) 

Sensitivity analysis shows that the variation of damping value  in the interesting range of 

earthquake engineering does not change the Ia value significantly; thus, using Equation 5 would not 

depart too much from Ia values associated with moderate damping ratios (Arias 1970).  

 

A concern is raised for the correctness of derivation for Equation 4 that might violate the 

assumptions iii and v above. When  = 0, the left integral in Equation 3 should be zero; i.e., the dissipated 

energy Ed = 0, and the earthquake input energy Ei cannot be balanced by the zero dissipated energy. Then, 

the earthquake intensity cannot be defined as the energy dissipation accumulated in the structural 

frequency domain. 

 

The issue in the original derivation (Arias 1970) might be due to the determination of the lower 

and upper bounds/limits for the triple integral of the earthquake input energy Ei during changing the order 

of integration. More details can be found on Page 481 in Appendix of the reference (Arias 1970). A new 

derivation is presented in the following section.     

 

DERIVATION OF ENERGY-BALANCED INTENSITY 

 

Energy Expression for Earthquake Intensity 

 

From Assumption v above, the earthquake intensity should be expressed based on the dissipated energy 

Ed accumulated in the structural frequency domain. If the displacement u in Equation 1 is found by 

solving the dynamic Equation 1, then the dissipated energy due to viscous damping is defined as: 

 == dtu
ud ducduucE

0
2max

min
                                                                     (6) 

where umin and umax are respectively the low and upper limits of displacement within the time 

duration td being considered. The middle term of Equation 6 is the accumulated work done by the 

damping force along the corresponding displacement. It is not easy to evaluate this energy because the 

velocity u is a multiple-value function of displacement u. Therefore, the integral with respect to u is 

transformed into that with respect to time t as the rightmost term in Equation 6, from which the energy-

based intensity Id can be expressed by the cumulative energy in the frequency domain as: 

 d
m

E
I d
d =

0
                                                                              (7) 
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where  is the circular frequency of the system and is given by: 

mk /=                                                                                (8) 

The upper frequency limit   of the integral in Equation 7 is the maximum circular frequency to 

be considered, whose value was assumed infinity in the derivation (Arias 1970). To avoid directly using 

Ed, the input energy Ei Equation 3 is modified as: 

−=−== dd tt
id dtuyduyEE

0 00 0                                                     (9) 

which is applied in the following derivation. 
 

Response of SDOF Structural System 

 

The displacement of a SDOF system can be expressed as (Chopra 2001): 


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where y0 is a continuous function with regard to time variable t. Term  is a time variable similar 

to t. Term d is the damped circular frequency with expression 

21  −=d                                                                            (11) 

Derivation of Earthquake Intensity 

 

In deriving the earthquake intensity, it is required to find the displacement increment du or the 

corresponding velocity. To this end, differentiating Equation 10 with respect to time t, the velocity of the 

SDOF system is given after rearrangement by 
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which is the ratio of displacement increment du to increment time dt. Note that the low limit of 

time was extended from 0 to -∞ in the Arias derivation (Arias, 1970) but it is unnecessary to do so. 

According to the assumptions made for the earthquake intensity, the structural frequency  is not 

expected to appear in the expression. To this end, an integration over the frequency range from 0 to  is 

conducted to eliminate the frequency . Therefore, the earthquake intensity per unit mass over the 

structural frequency range is defined by: 
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Substituting for the velocity in Equation 12 into Equation 13 yields: 
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In order to evaluate this complicated integral, the following two parameters are introduced: 

)(  −−= ta ; )(1 2  −−= tb                                                         15a, b) 

and then changing the order/sequence of the integration in Equation 14 can yield 
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where terms A and B are two intermediate parameters that are two integrals as defined in the 

following. Once these two integrals are determined, the intensity in Equation 16 can be further simplified. 

To that end, the formulas provided on page A59 of Reference (Grossman, 1981) are applied to get the A 

and B expressions as below 
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According to the expressions in Equations 17 and 18, the term bA + aB in the integrant of 

Equation 16) can be expressed after rearranging and simplifying as,  

)sin(  beaBbA a=+                                                                (19) 

which is quite a simple expression for the complicated integral because some terms are cancelled 

out. Substituting Equation 19 into Equation 16, the integral with respect to variable  can be evaluated 

using integration by parts (Grossman 1981) as follows:  
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Note that when using the upper limit (→t) condition, the limiting value sin/=1 is applied, 

because of the small value of 21 ( )t   = − −  for  = t; when using the low limit, 0 (0) 0y =  is applied, 

which means that the acceleration should be zero at the start time. Term C in Equation 20 is also a 

complicated expression and can be evaluated by using the mean value theorem of integral described on 

page 319 of the Reference (Grossman 1981) as:  
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in which  is a value within the range of 0 to 1. Now substituting Equation 20 back into Equation 

16, the energy-based intensity is finally expressed in a simplified form as: 
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where the acceleration 
0

y  is a function of time t; and term C  is also a function of t and associated with 

0
y ,

0
y , damping ratio , and circular frequency . In general, for a random ground motion y0, it is hard to 

determine an exact value of  so that the F in Equation 22 and in turn the function C in Equation 21 can 

be determined except a numerical solution is done for a specific earthquake motion y0 with given values 

of ,  and .  

 

When the upper limit frequency  is assumed quite large or infinite as in the Arias derivation, the 

effect of term C on the energy can be ignored. In fact, the function F in Equation 22 has bound for any 

0<<t and large  so that C in Equation 21 tends to zero. Thus, if the upper limit frequency  is assumed 

quite large or infinite, the expression in the square brackets approaches unity so that Equation 23 can be 

further simplified to, 
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which is a simplified earthquake intensity defined per unit mass with coefficient Cd. 

 

Discussion on Earthquake Intensity 
 

To see the difference between Equations 4 and 24, the two curves corresponding of coefficients with 

constant /2 are drawn in Figure 1. It is observed that, the two intensity coefficients have the same value 

of 1 only when  = 1. When damping value  decreases, the difference of the two coefficients increase 

significantly. Particularly, when  approaches zero, coefficient Cd in Equation 24 tends to infinity, while 

Arias coefficient Ca in Equation 4 to /2. Considering the Ca variation as indicated in Figure 1, the 

structural damping value  does not affect the intensity value significantly (Arias 1970). For instance, 

when damping ratio  varies from 0 to 0.2, the Ca value varies from 1.571 to 1.398 and the relative 

difference is 11%. This observation leads to a conclusion that selecting zero as a standardized  value for 

engineering structures does not depart too much the calculated intensity value. But this might violate the 

intention of using damping  to quantify structural damage as expected from the assumption. If  = 0, the 

dissipated energy Ed in the right term on the left-hand side of Equation 3 should be zero, but the 

earthquake input energy in the right term of Equation 3 is not equal to zero. This violates the condition of 

energy balance because the input earthquake energy is actually applied in the derivation, the value Ca(0) 

of /2 from Equation 4 or 5 might not represent the actual intensity behaviour due to damping energy. 

This issue had been noticed and explained that Equation 4 should be interpreted from a viewpoint of limit 

concept instead of an expression from directly setting  = 0 (Arias 1970). On the other hand, the new 

derived Equation 24 does not involve other mathematical assumptions as applied in the Arias derivation. 

The intensity coefficient Cd(0) tends to  but not /2. This indicates that the energy-based earthquake 

intensity is infinitive, and the physical meaning is that the input energy cannot be balanced by the zero 
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damping energy. When  = 0, the input energy should be balanced by kinetic energy plus strain energy, 

and no energy dissipation occurs in the structural system. It is also interesting to note from Figure 1 that 

the Arias intensity at zero damping level corresponds to the intensity value derived in this paper for 

damping value  = 2/ = 0.637.  

 

 
 

Figure 1. Comparison of intensity coefficients. 

 

APPLICATION OF EARTHQUAKE INTENSITY 

 

Energy Response with Zero Damping 

 

To check the effect of damping ratio on the energy response, a dynamic analysis is conducted for the 

SDOF system without damping. The intention is to verify the energy behaviour for the situation when  = 

0 as the case for conventional Arias intensity. After transient time-history analysis for the SDOF system, 

the displacement and energy time histories are depicted in Figure 2. The strain energy response Es in 

Figure 3 is not zero. It is seen that the damping energy Ed is zero throughout the loading process, and the 

input energy Ei is equal to the summation of kinetic energy Ek and strain energy Es. This indicates that 

when   = 0, the basic assumption for Equation 4 is not correct because the energy balance condition Ei = 

Ed is not satisfied for the derivation. Therefore, if the dissipated energy with a damping factor is used to 

represent the destructiveness or damage of structures, the damping ratio of  should not be set to zero. 

 

 
Figure 2. Energy response of elastic SDOF system with  = 0. 

 

Energy Response of Seismic Sensors 

 

Seismic instrumentation is important in the earthquake and structure engineering community. A 

seismic sensor consists of a suspended mass that moves relatively to the rigid instrument frame. The 
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parameters for the sensors are assumed for the current study and the values are shown in Table 1. A 

seismometer has a relatively large mass (1 kg) and small stiffness (0.001 N/m) so that a small frequency 

0.00503 Hz is achieved. High damping value is designed for seismic sensors to avoid phase distortion and 

  = 0.7 is normally chosen (Clough and Penzien 2003, Thomson 1981). It is interested to note from 

Equation 24 that the damping ratio  of 2/ (=0.63662 shown in Table 1) is close to 0.7 for seismic 

instruments. Therefore, the damping value  of 2/ is used in the analysis to obtain the sensor’s response 

to base excitations. It is noted that a sensor system must behave elastically without any stiffness 

degradation and such a system is applied in the derivation of energy-based earthquake intensity. After 

performing transient analysis for the seismometer, the displacement response and the corresponding 

energy response are shown in Figure 3. 

 

Table 1: Sensor’s parameters for the transient analyses. 

 

Sensor m2 (kg) k2 (N/m) f (Hz)  c2 (kgm/s) fm (Hz) 

Seismometer 1 0.001 0.00503 0.63662 0.04026 >0.015 

 

 
Figure 3. Energy response of seismometer with  = 2/. 

 

Note from Figure 3 that the peaks and valleys of the energy response are much more significant, 

and the sensor is more sensitive to the base excitation. Figure 3 indicates that the strain energy Es is nearly 

zero and the level of damping energy Ed is low at about the time at which the maximum input energy Ei is 

attained. The kinetic energy Ek plays a significant role in this domain. However, when the base loading 

approaches the end, the kinetic energy Ek disappears, and the input energy Ei is balanced by the damping 

energy Ed alone 

 

Intensity of Cumulative Energy 

 

In accordance with the energy-based earthquake intensity expressed in Equation 4 or 24, a cumulative 

energy of the acceleration time series is defined by ASCE 4-16 standard (ASCE 2016): 
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which does not include the term of damping but it corresponds to  = 1 either in Equation 4 or 24. 

Equation 25 is used to determine the strong earthquake duration tm corresponding to the cumulative 

energy to rise from 5% to 75% of total energy.  The duration tm is applied to calculate to one-side power 

spectral density defined by the Fourier amplitude of the earthquake acceleration time series (ASCE 2016).  
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In using actual recorded or artificial earthquake motion, structural analysts or engineers may face 

the problem of determining the length of strong motion traces that should be applied to enforce the 

superstructures. A common way for estimating strong motion duration is based on the energy-based 

earthquake intensity, and the duration tm is defined as (Trifunac and Brady 1975): 

05.095.0 tttm −=                                                                           (26) 

where t0.95 and t0.05 are respectively the times at which 95% and 5% of the energy predicted by the 

Arias intensity. Equation (26) shows that in total, 90% of cumulative energy is applied to determine the 

strong motion duration. However, many records include a long tail of base motion with small amplitude 

up to the end of the motion, and this tail motion contributes much of energy to the total accumulated 

energy. Thus, the ASCE 4-16 standard (ASCE 2016) applies a 70% rule to quantify the strong motion 

duration: 

05.075.0 tttm −=                                                                           (27) 

in which t0.75 is the time at which 75% of energy is reached using the standardized intensity in 

Equation (29). In applying the strong motion duration tm, the total duration should include a rise time of 

tm/7 and a decay time of 5tm/7 to obtain an enveloped duration for structural analysis (Salmon and 

Kennedy 1992).   

 

To illustrate the characteristics of the strong motion durations defined above, the 1940 El Centro 

ground motion with parameters given in Table 1 is applied for the analysis. The horizontal acceleration of 

Impvall/I-ElC270 presented in the reference (Liu and Lu 2010). Upon using Equation 25 to the three 

acceleration time histories, the computation results are depicted in Figure 3.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Energy response and strong earthquake time duration. 

 

It is observed from Figure 3 that the vertical acceleration is first to reach the 5% input energy 

level at time 1.7 s. If the criterion in Equation 26 is used, the vertical acceleration attaints its 95% energy 

at about time 20 s, and then the other two accelerations reach their 95% energy level at time 26.1 sec. The 

effective strong motion duration is 24.4 sec when the horizontal accelerations are taken as the reference. 

Note that for determining the upper bound time of duration, the latest time history that attains its upper 

bound of energy criterion should be employed. Also, because the PGA of horizontal acceleration is 

greater than the PGA of vertical acceleration, the horizontal base excitation will cause a response from 
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structures that is more severe than the vertical base excitation. Thus, it is reasonable to use horizontal time 

history as a reference to determine the strong motion duration. The time duration of 24.4 sec can contain 

almost all strong ground motion for structural analysis. 

 

When the ASCE criterion in Equation 27 is used, it is seen that the vertical acceleration still 

attaints its 75% energy level at about 10 sec first, and then the ElC180, and at last the ElC270 acceleration 

reaches the energy level at 9.25 s (this is less than 10 s). The effective strong motion duration tm is 9.08 

sec when the ElC270 acceleration is taken as the reference. If the rise time 1/7 tm and decay time 5/7 tm 

are considered, the total time duration is about 17 sec, which is less than 24.4 sec from 95% criterion. 

Note that time duration of 17 sec can also contain almost all the strong ground motion for structural 

analysis, but the higher peaks of Impvall/I-ElC180 between 20 sec and 30 sec are lost. Thus, using 95% 

criterion to determine time history duration is on the conservative side for Fourier analysis. An 

investigation on predicting strong motion duration can be found in the literature to account for site and 

near-source influences based on Arias intensity (Kempton JJ, Stewart 2006). 

 

CONCLUSION 

 

It is shown from the analysis results that the derived intensity satisfies the energy-balanced condition. For 

an elastic structural system without damping, the earthquake input energy is transformed into kinetic 

energy plus strain energy of the structure, and the input energy would never be balanced. The 

conventional standardized intensity does not correspond to zero damping but to damping ratio equal to 

2/ ( 0.7), which is a damping value commonly applied in the design of seismic sensors. Using energy-

balanced intensity can provide reasonable insights to earthquake strength, rational information for 

assessing seismic margin, and designing warning systems for shutting reactors down. In using the energy-

based earthquake intensity to identify the time duration of strong motion, as the 75% or 95% ratio is used, 

the value of damping ratio does not affect the estimate of the time duration of strong earthquake motion. 
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