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ABSTRACT 

 

The application of ring spring dampers in seismic design and strengthening of engineering structures is less 

or even not investigated. Ring spring dampers are extremely robust, heat-resistant, and durable. In 

addition, ring springs are mostly maintenance-free and used in mechanical engineering with maintenance 

intervals of up to 50 years. With an innovative design, they combine self-centering characteristics with high 

seismic energy absorption capacity. The preloading feature introduces a typical flag-shaped force-

deformation hysteresis curve, which can absorb seismic energy in a structure very efficiently independent 

of deformation velocity (non-viscous damping). Due to these properties, a structure with ring spring 

dampers can withstand seismic loads with little or even no damage. The springs themselves also remain 

free of damage. 

 

The objective of the present work is to give an overview of the behavior of ring spring dampers. 

The properties, calculation, and effective damping are discussed. 

 

INTRODUCTION 

 

Ring spring dampers are not widely investigated by civil engineers, several perspectives have to be explored 

such as the damping effect. One of their features is high heat resistance and durability. High performance 

of the ring spring dampers can be reached by implementing the concept of self-centering in the design 

method. Therefore, it is possible to develop low-damage and high-performance systems with self-centering 

capabilities as an alternative to conventional systems (Issa 2018). The aim is to ensure that the occupancy 

of the building is maintained right after the earthquake, and therefore only the elastic structural behavior is 

exploited. The advantage is a high level of reliability, which is particularly important in the nuclear field. 

 

PROPERTIES 

 

Ring springs, also known as friction springs, are made of steel material that can withstand cyclic loads. 

They are composed of outer and inner rings, each with conical surfaces. The springs can be loaded axially 

and, as a result, the outer rings expand in diameter while the inner rings are compressed. Since the 

deformation of the rings is elastic, the friction forces are so high that the restoring force is 66 % percent 

less than the deformation force. Figure 1 shows the typical flag-shaped load-deformation curve. The area 

with an orange background represents the hysteretic damping 𝐷𝑟𝑒𝑙. A direct correlation can be introduced 

between the max force 𝐹max and the restoring force 𝐹R which is presented in the next formula. 

 

 𝐹R = (1 − 𝐷𝑟𝑒𝑙) 𝐹max (1) 
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The frictional damping D also depends on the lubrication, so in addition to the standard value of 

66 %, damping values of 55 %, 45 %, and 35 % are also possible. The sliding surfaces are lubricated ex-

factory and, in general, relubrication during operation is not necessary. 

 

 
 

Figure 1. Design and typical load-deformation curve of a ring spring (Helm, L., Sadegh-Azar, H., 

Jahnel, L., Jandrey, H. 2022) 

 

As the rings themselves are not fixed, the spring must be preloaded to secure its position. This must 

be at least 5 to 10 % of the final force and can also be increased to up to 60 % if required. The preload 

displacement ∆V is calculated from the total stroke ∆ges and the preload force 𝐹V: 

 

 ∆𝑉=  
𝐹𝑉

𝐹𝑚𝑎𝑥
 ∆ges (2) 

 

The available stroke is determined by the number of rings. The stroke results from the relative 

displacement of two rings ∆e and this unit is defined as one element 𝑒. The total stroke can be calculated 

as follows: 

 

 ∆ges=  𝑒 ∆e (3) 

 

Considering the preload, the usable stroke results from: 

 

 ∆max =  ∆ges −  ∆V (4) 

 

Although the springs themselves can only absorb compressive forces, a tension spring element can 

be created by appropriate design. A possible solution is shown in figure 2. (Ringfeder; Jahnel, L., Cole, E. 

M. 2015) 

 
After exceeding the maximum stroke, the spring is in the block state in which it is still able to carry 

greater loads but behaves like a stiff element. When the load is reduced, the spring returns to its initial 

position and remains fully operational. This results in a high level of safety because the greatest 

transmissible static force is limited by the design and not by the ring springs. Ring springs are currently 

employed in the mechanical engineering sector for absorbing and dissipating high kinetic energies even 

though their properties also offer great advantages in earthquake engineering. They can withstand many 

cycles, are reusable, and are suitable for continuous use. As a result, they are always ready for use, even in 

the event of an aftershock or clustered seismicity. Furthermore, if a ring in a friction spring assembly were 

to break, the spring would still be functional and the maximum transmissible load would be maintained. 
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However, the use of the ring spring is also extended to the mechanical engineering field with maintenance 

intervals of up to 50 years (Sadegh-Azar, H., Goldschmidt, K., Jahnel, L. 2019). The ring springs are not 

only robust to cyclic loading, but they are also favorable in case of fire and maintain their function until the 

critical temperature is reached (Wiebe, L. D. A. 2015). Another advantage is their self-centering capability 

after an earthquake event whereby permanent deformations are prevented. 

 

 
 

Figure 2. Design of a double-acting ring spring: tension and compression  

 

 
 

Figure 3. Load-deformation measurement of a double-acting ring spring 

 

A measurement is shown in figure 3. The expected hysteresis curve is reliably reproduced by the 

experiment. The hysteresis is generally independent of the loading velocity (Ringfeder), which is to be 

investigated with further experiments at the university. 

 

FORCES IN THE SPRING 

 

For the sake of comparison between the ring spring and other springs, the same amount of resistance can 

be achieved with fewer materials. The generated stresses are distributed equally over the cross-section. To 
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better understand the ring spring, the stress in the rings will be determined in the following. (Meissner, M., 

Schorcht, H., Kletzin, U. 2015) 

 

 
 

Figure 4. Forces on one element (Meissner, M., Schorcht, H., Kletzin, U. 2015) 

 

The geometry of the rings is defined by the parameters 𝑡𝑜, 𝑡𝑖, 𝑦𝑜, 𝑦𝑖, 𝑏 and 𝛽. The average thickness 

of the outer rings 𝑡𝑜𝑚 is calculated with 

 

 𝑡𝑜𝑚 =
𝑡𝑜+𝑦𝑜

2
 (5) 

 

Accordingly, the average thickness of the inner rings 𝑡𝑖𝑚 can be determined. The thickness of the 

outer and inner rings can be adjusted to the material-specific relationship between the compressive and 

tensile strength. 

 

 𝑡𝑖𝑚 =
𝑡𝑖+𝑦𝑖

2
 (6) 

 

The stress 𝜎𝑜 in the rings can be determined based on Barlow's formula. A half outer ring is 

considered (figure 4). The radial force 𝐹𝑟 acts in the area of the contact surface between the inner and outer 

ring. 

 

 𝜎𝑜 =
𝐹𝑟

𝜋 𝑡𝑜𝑚 𝑏
 (7) 

 

The radial force is calculated according to the triangle of forces with the angle of friction  𝜌, the 

inclination of the rings 𝛽, and the spring force 𝐹. A distinction must be made between loading (𝐹𝑟,𝑙) and 

unloading (𝐹𝑟,𝑢𝑙) of the spring. This affects the direction of the frictional force 𝐹𝐹. 

 

 𝐹𝑟,𝑙 =
𝐹

tan(𝛽+𝜌)
 (8) 

 𝐹𝑟,𝑢𝑙 =
𝐹

tan(𝛽−𝜌)
 (9) 

 

In the following, only the loading is considered. Finally, the stress of the outer rings can be 

calculated. 

 

 𝜎𝑜 =
𝐹𝑟

𝜋 𝑡𝑜𝑚 𝑏 tan(𝛽+𝜌)
 (10) 
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The tension of the inner rings is calculated accordingly. 

 

 𝜎𝑖 = −
𝐹𝑟

𝜋 𝑡𝑖𝑚 𝑏 tan(𝛽+𝜌)
 (11) 

 

EFFECTIVE DAMPING 

 

Ring springs have damping of approximately 66 %. However, this value refers to the amount of the restoring 

force and thus describes the hysteresis or the force-deformation curve. For oscillatory systems,  the degree 

of damping, also known as Lehr’s damping coefficient, is commonly used. Despite this value being defined 

for linear vibration equations with viscous damping, an analogous value can be determined. For this 

purpose, the logarithmic decrement or the hysteresis curve can be used to quantify the damping for a better 

characterization of the vibration behavior. 

 

Figure 5 shows the work done over the displacement without preload. Here, 𝑊𝑆 is the work of 

stiffness and 𝑊𝐷 is the work of damping. From their ratio, the degree of damping can be estimated. 

 

 
 

Figure 5. Work done, 𝑊𝑆 work of stiffness, 𝑊𝐷 work of damping (Helm, L., Sadegh-Azar, H., 

Jahnel, L., Jandrey, H. 2022) 
 

 𝜉 =
2 𝑊𝐷

4𝜋 𝑊𝑆
=

2 
2

3
 ∆

4𝜋 
2

3
 ∆

=
1

2𝜋
≈ 16 % (12) 

 

This simple consideration results in approximately 16 %, though the preload cannot be counted for 

this approach. In an alternative analytical approach, the vibration amplitudes are calculated. The logarithmic 

decrement subsequently provides the damping factor through the reduction of the amplitudes. Initially, the 

range of the preload is calculated. In this case, the constant spring force −𝐹 is assumed for small 

displacements. The mass 𝑚 starts at the displacement ∆0 and is now accelerated to the maximum velocity 

𝑣 by the constant spring force. The new amplitude ∆0,5 can then be calculated based on this. 

 

 𝑣 = √
2

3

𝐹

𝑚
∆0 (13) 

 ∆0,5=
𝑣2

2

𝑚

𝐹
=

1

3
∆0 (14) 

 𝛿 = 2 ln (
∆0

1

3
∆0

) = 2 ln(3) (15) 
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 𝜉 =
2 ln(3)

√4𝜋2+(2 ln(3))2
≈ 33 % (16) 

 

This results in significantly higher damping of 33 %. The same procedure is now used to calculate 

friction springs without preload and the spring force is hence considered to be linear. 

 

 𝑣 = ∆0𝜔 sin(𝜔𝑡) = ∆0
√

1

3
𝐾𝑅𝐿

𝑚
 (17) 

 ∆0,5=
𝑣

𝜔 sin(𝜔𝑡)
= √

1

3
∆0 (18) 

 𝛿 = 2 ln (
∆0

√
1

3
∆0

) = 2 ln(√3) (19) 

 𝜉 =
2 ln(√3)

√4𝜋2+(2 ln(√3))2

≈ 17 % (20) 

 

This approach provides damping of 17 % and corresponds approximately to the calculation with 

the work done. The damping is between 17 % and 33 % depending on the preload. This correlation will 

now be investigated in more detail. For this purpose, a single degree of freedom system without stiffness is 

assumed. The free vibration is calculated numerically. With the maximum amplitudes and the logarithmic 

decrement, the damping can be determined. The investigation has shown that, unlike linear systems, the 

damping changes over the deflection. Furthermore, the initial stiffness has an influence. The results are 

shown separately for the preload and the initial stiffness in figure 6 and figure 7. 

 

 
 

Figure 6. Damping ratio as a function of preload (Helm, L., Sadegh-Azar, H., Jahnel, L., 

Jandrey, H. 2022) 
 

In a system without preload, a damping factor of just under 17 % is achieved. As soon as a small 

preload is present, damping of approx. 33 % is observed for small displacements, which drops rapidly for 

larger displacements. In this case, the initial stiffness, which is assumed to be very high here, is decisive. If 

the preload is increased up to 10 %, 20 %, which is the relevant range for practical applications, then 

damping of 20 % to 33 % is possible. With increasing preload, larger displacements approach higher 

damping. 
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Figure 7: Damping ratio as a function of initial stiffness (Helm, L., Sadegh-Azar, H., 

Jahnel, L., Jandrey, H. 2022) 
 

The initial stiffness K is specified in relation to the tangent stiffness E at loading. It can be seen 

that a smaller initial stiffness reduces the damping and especially for small displacements the effect is very 

large. 

 

DYNAMIC MAGNIFICATION 

 

A magnification function describes the response of a structure under harmonic loading or in this case under 

harmonic base excitation. It shows how robustly a system behaves at different frequencies. The harmonic 

base excitation ∆𝑔(𝑡) is defined as  

 

 ∆𝑔(𝑡) = ∆g,0 sin 𝜔p𝑡. (21) 

 

In this case ∆g,0 is the amplitude and 𝜔𝑝 the frequency. The magnification function 𝑉𝑑 results from 

∆𝑔,0 and the largest displacement ∆𝑚𝑎𝑥 of a structure due to the harmonic base excitation ∆𝑔(𝑡), whereby 

only the steady-state response is considered here. 

 

 𝑉𝑑 =  
∆𝑚𝑎𝑥

∆𝑔,0
 (22) 

 

For an elastic Single-Degree-of-Freedom system with a viscous damping 𝜉, the magnification 

function can be derived from the equation of motion and calculated as follow. 

 

 𝑉𝑑 = √ 1+(2𝜉𝛽)2

(1−𝛽2)2+(2𝜉𝛽)2 (23) 

 

Here 𝛽 is the ratio of the excitation frequency to the natural frequency and a factor of 𝑉𝑑 = 10,05 

results in a damping ratio of 5 % in resonance. Such a system is now additionally braced and analyzed with 

ring springs. In this case, the ring springs are dimensioned in such a way that the natural frequency is 
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doubled and, simplified, no preload is taken into account. For this system, the solution must be found 

numerically. The results are shown in figure 8. 

 

 
 

Figure 8. Magnification function of a system with and without ring springs (Helm, L., Sadegh-

Azar, H., Jahnel, L., Jandrey, H. 2022) 
 

Due to the higher damping of the ring springs, the magnification factor in resonance could be 

reduced to 𝑉𝑑 = 4,54, which corresponds to a damping ratio of 11 %. 

 

SUMMARY 

 

This paper gives an overview of the ring spring behavior. Implementing the ring spring damper as one of 

the energy dissipation devices is not very well investigated by the structural engineers, one of the features, 

which distinguishes the ring spring damper among the other dampers, is the ability to maintain under 

function with high resistance after the cracking of rings. The stresses are distributed equally over the cross-

section. The advantage of these springs is that they can absorb a large amount of impact energy in a 

structure, independently of deformation velocity. The investigation shows that the damping is 

approximately 16 % up to 33 % considering the preload. Therefore, a system with ring spring dampers has 

significantly reduced magnification factor. 

 

It is possible to develop low-damage and high-performance systems with self-centering capabilities 

as an alternative to conventional systems (Issa 2018). The aim is to ensure that the function is maintained 

even immediately after the earthquake, and therefore only the elastic structural behavior is exploited. The 

advantage is a high level of reliability, which is particularly important in the nuclear field. 
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