Conclusion

Nonlinear, Inelastic ESSI Analysis

SMiRT26 Tutorial III

Boris Jeremić and Han Yang UC Davis, ETH Zürich

SMiRT26, 14Jul2022

Jeremić et al.

Outline

Introduction Motivation Seismic Ground Motions, Overview

Seismic Motions Seismic Motion Observations Seismic Wave Field Development Seismic Input into ESSI Model

Conclusion

Jeremić et al.

Outline

Introduction Motivation

Seismic Ground Motions, Overview

Seismic Motions Seismic Motion Observations Seismic Wave Field Development Seismic Input into ESSI Model

Conclusion

Jeremić et al.

Motivation

Improve modeling and simulation for infrastructure objects

Reduction of modeling uncertainty

Choice of analysis level of sophistication

Goal: Predict and Inform

Engineer needs to know!

Jeremić et al.

Conclusion

Motivation

Dedication

Robert P. Kennedy, 1939-2018

"Response of a soil structure system is nonlinear, and I would really like to know what that response is!"

Nebojša Orbović, 1962-2021

"As an engineer, I have to know what are response sensitivities to modeling choices and model parameters."

Jeremić et al.

Hypothesis

- Interplay of the Earthquake, Soil/Rock and Structure in time domain, plays a major role in successes and failures
- Timing and spatial location of energy dissipation determines location and amount of damage
- If timing and spatial location of the energy dissipation can be controlled (directed), we could optimize soil structure system for
 - Safety
 - Economy

Jeremić et al.

ESSI: Energy Input and Dissipation

Energy input, dynamic forcing

Energy dissipation outside SSI domain:

- SSI system oscillation radiation
- Reflected wave radiation

Energy dissipation/conversion inside SSI domain:

- Inelasticity of soil, contact/interface zone, structure, foundation, dissipators
- Viscous coupling, porous solid-pore fluids, solids/structures-external fluids

Numerical, algorithmic energy dissipation/production

Jeremić et al.

Prediction under Uncertainty

- Epistemic, Modeling Uncertainty, Simplifying assumptions
 Low, medium, high sophistication modeling and simulation
 Choice of sophistication level for confidence in results
- <u>Alietory</u>, Parametric Uncertainty, $M\ddot{u}_i + C\dot{u}_i + K^{ep}u_i = F(t)$,

Uncertain mass *M*, viscous damping *C* and stiffness K^{ep} Propagation of uncertainty in loads, F(t)Results are PDFs and CDFs for σ_{ij} , ϵ_{ij} , u_i , \dot{u}_i , \ddot{u}_i

Jeremić et al.

Goal: Reduction of Modeling Uncertainty

- Modeling Uncertainty: introduced with unnecessary and unrealistic modeling simplification
- Simplified (or inadequate/wrong) modeling: important features are missed (3C (6C) seismic ground motions, inelasticity, etc.)
- Modeling simplifications are justifiable if one, two or higher level sophistication model demonstrates that features being simplified out are not important
- Use of HPC for low modeling uncertainty and direct probabilistic modeling and simulations

Jeremić et al.

Seismic Ground Motions, Overview

Outline

Introduction

Seismic Ground Motions, Overview

Seismic Motions Seismic Motion Observations Seismic Wave Field Development Seismic Input into ESSI Model

Conclusion

Jeremić et al.

Seismic Ground Motions, Overview

Earthquake Ground Motions

- Body, P and S waves
- Surface, Rayleigh, Love, Stoneley and other waves
- Inclined waves
- 3C/6C waves
- Lack of correlation, incoherence

Jeremić et al.

Conclusion

Seismic Ground Motions, Overview

Body Primary (P) Waves

Jeremić et al.

Conclusion

Seismic Ground Motions, Overview

Body Secondary (S) Waves

Jeremić et al.

Conclusion

Seismic Ground Motions, Overview

Surface Rayleigh Waves

Jeremić et al.

Conclusion

Seismic Ground Motions, Overview

Surface Love Wave

Jeremić et al.

Introduction
0000000
000000000000

Seismic Ground Motions, Overview

Importance of Surface Waves

- Rayleigh waves are produced by interaction of P- and SV-waves with soil/rock surface
- Love waves are produced by interaction of SH-waves with soil/rock surface
- For realistic geology, surface wave influence is felt close to the epicenter
- Rayleigh waves do carry majority of seismic energy to distance
- Rayleigh waves are responsible for peak accelerations at distance
- Velocity of Rayleigh decreases with increase in frequency

Jeremić et al.

Seismic Ground Motions, Overview

Earthquake Motions, Horizontally Layered Geology

Jeremić et al.

Conclusion

Seismic Ground Motions, Overview

Earthquake Motions with any Geology

Jeremić et al.

Seismic Ground Motions, Overview

3C/6C Inclined Waves

- Deep and shallow geology influences
- Superposition of body and surface waves
- Distance from the causal fault
- 6C, not 3C is a better way to characterize seismic waves

Jeremić et al.

Seismic Ground Motions, Overview

Development of Seismic Motions

- 1C, 2C, 3×1C, 3C/6C seismic motions
- Knowledge of geology, deep and shallow, needed
- Deconvolution of surface motions
- Convolution of motions from depth
- Regional scale models using Real-ESSI, SW4, fp, etc.
- Stress test motions, Thomson/Haskel solution

Jeremić et al.

Outline

troduction Motivation Seismic Ground Motions, Overview

Seismic Motions Seismic Motion Observations

Seismic Wave Field Development Seismic Input into ESSI Model

Conclusion

Jeremić et al.

Earthquake Ground Motions

- Real earthquake ground motions

Body waves: P and S waves Surface waves: Rayleigh and Love waves Near surface layer waves: Stoneley waves Lack of correlation, incoherent motions Inclined waves 3C/6C wave fields

- What are the effects of real earthquake ground motions on soil-structure systems ?!

Jeremić et al.

Seismic Motion Observations

Tohoku Earthquake, Acc, Disp

Jeremić et al.

1C, 2C, 3C, 6C Seismic Motions

- All, most measured motions are full 3C, 6C
- What is the effect of neglecting, simplifying out to 1C
- One example of an almost 2C motion (LSST07, LSST12)

Jeremić et al.

3C (6C) Seismic Motions

- All (most) measured motions are full 3C (6C)
- Example of an almost 2C motion (LSST07, LSST12)

Jeremić et al.

San Pablo Earthquake, 14Jun2017

Courtesy of http://www.strongmotioncenter.org/

Jeremić et al.

ESSI: 6C or 1C Seismic Motions

- Assume that a full 6C (3C) motions at the surface are only recorded in one horizontal direction
- From such recorded motions one can develop a vertically propagating shear wave (1C) in 1D
- Apply such vertically propagating shear wave to same soil-structure system

Jeremić et al.

Realistic Ground Motions

- Free field seismic motion models

Jeremić et al.

Development of Realistic Motions

- Sources will send both P and S waves

Jeremić et al.

1C vs 6C Free Field Motions

- One component of motions, 1C from 6C
- Excellent fit, wrong mechanics

(MP4) (MP4)

Jeremić et al.

When to use 3C and/or $3 \times 1C$

Jeremić et al.

1C vs 3×1C vs 3C Seismic Motions

- 1C is used most frequently
- 3×1C can be used depending on frequency/wave length of interest,
- 3C is more realistic, however it is challenging to define motions in full 3C

Jeremić et al.

Real Wave Field from Surface Measurements

- Use surface and shallow measurements to develop 3C/6C wave field
- Currently in development, Dr. Han Yang lead

Jeremić et al.

Stress Testing SSI Systems

- Excite SSI system with a suite of seismic motions
- Simple sources, variation in strike and dip, body waves P, S; (near) surface waves (Rayleigh, Love, Stoneley, etc.)
- Stress test soil-structure system

Jeremić et al.

Stress Test Source Signals

Jeremić et al.

Layered and Dyke/Sill Models

- Horizontal layers
- Dyke/Sill intrusion

- Source locations matrix, point sources
- Source strike and dip variation
- Magnitude variations
- Range of frequencies

Jeremić et al.
Layered System, Variable Source Depth

Jeremić et al.

Seismic Motion Observations

Layered System, Displacement Traces

- Epicenter is 2500m away from the location of interest
- Source depth 850m (left) and 2500m (right)
- Different wave propagation path to the point of interest
- Surface waves quite pronounced
- Layered geology did not filter out surface waves!

Jeremić et al.

Seismic Motion Observations

Dyke/Sill Intrusion, Variable Source Depth

Jeremić et al.

Dyke/Sill Intrusion, Variable Source Depth

- Lower amplitudes than with layered only model!
- Difference in body and surface wave arrivals
- Surface waves present, more complicated wave field

Jeremić et al.

Seismic Motion Observations

Dyke/Sill as Seismic Energy Sink

- Dyke/Sill (right Fig), made of stiff rock, is an energy sink, as well as energy reflector
- Variable wave lengths behave differently, depending on dyke/sill geometry and location

Jeremić et al.

Plane Wave Stress Test Motions

- Plane wave stress test motions: 3D-6C (Haskel's solution for plane harmonic waves) and/or 3D-3×1C and/or 3D-1C and or 1D-1C motions
- Knowledge of deep and shalow geology and the soil site is important
- Variation in inclination, frequency, energy and duration
- Try to "break" the system, shake-out strong and weak links

Jeremić et al.

Free Field, Variation in Input Wave Angle, f = 5Hz

Jeremić et al.

SMR ESSI, Variation in Input Wave Angle, f = 5Hz

Jeremić et al.

Free Field, Variation in Input Frequency, $\theta = 60^{\circ}$

Jeremić et al.

SMR ESSI, Variation in Input Frequency, $\theta = 60^{\circ}$

Jeremić et al.

SMR ESSI, Variation in Input Frequency, REAL TIME

Jeremić et al.

Seismic Motions

Seismic Motion Observations

Outline

troduction Motivation Seismic Ground Motions, Overview

Seismic Motions Seismic Motion Observations Seismic Wave Field Development Seismic Input into ESSI Model

Conclusion

Jeremić et al.

Ground Motions for ESSI Analysis

- 1C, 3×1C, 3C/6C, convolution or de-convolution
- 1C, or 3×1C wave field de-convolution from surface soil motions, then use DRM
- 1C, or 3×1C wave field de-convolution from surface rock outcrop motions, then convolution up the soil column then use DRM
- 3D with a full 3C wave field convolution using DRM
- Wave fields defined on linear elastic deep geology

Jeremić et al.

1C Wave Propagation

surface	
	Vs1 Vn1 ol ßi
layer #1	101, 1p1, p1, p1
layer #2	Vs2, Vp2, ρ2, β2
layer #m	Vsm, Vpm, \rhom, \betam
bedrock	

- Wave equation: $\rho \partial^2 u / \partial t^2 = G \partial^2 u / \partial z^2 + \eta \partial^3 u / (\partial z^2 \partial t)$
- Assume harmonic oscillations: $u(z,t) = U(z) \cdot e^{i\omega t}$
- Obtain: $(G + i\omega\eta)\partial^2 u/\partial z^2 = \rho\omega^2 U$
- Solution is a wave equation for a harmonic motions of frequency ω : $u(z, t) = Ee^{i(kz+\omega t)} + Fe^{-i(kz-\omega t)}$
- Complex wave number $k^2 = \rho \omega^2 / (G + i\omega \eta)$ and η is viscosity.

Jeremić et al.

Seismic Wave Field Development

1C Wave Propagation, contd.

- Solutions for top and bottom of each layer *m*:

$$u_m(z=0) = (E_m + F_m)e^{i\omega t}$$

 $u_m(z=h_m) = (E_m \cdot e^{ik_m h_m} + F_m e^{-ik_m h_m}) \cdot e^{i\omega t}$

- Note: solution is valid for a linear elastic or equivalent elastic material

Jeremić et al.

3C, Inclined Plane Wave, Layered Ground

- Thomson/Haskel ('50/'53) propagator matrix technique
- α_i, β_i, ξ_i, d_i are P, SV wave velocities, damping ratio and thickness for the *ith* layer

Jeremić et al.

3C, Inclined Plane Wave, Layered Ground, Contd.

- DRM layer geometry, boundary and exterior nodes
- Engineering site characteristics
- Inclined incident seismic wave:
 - Input wave potential, harmonic
 - Input time series signal

Jeremić et al.

DRM Layers

- HDF5 file containing required info on DRM layer
- Same DRM input format for 1C, 2×1C, 3×1C DRM motions

Jeremić et al.

Engineering Site Characteristics

Layers: Five column, plain text file

- S wave velocity
- P wave velocity
- Density
- Damping
- Layer thickness

1	// Form	at of So	il Prof	ile:	1
2	//Vs	Vp	rho	damp	thickness
3	500	816.5	2100	0.0	100
	750	1403.1	2300	0.0	200
5	1000	2081.7	2500	0.0	
6					
7	// Last	layer i	s the b	edrock.	
8	// User	should	NOT giv	e thickn	ess for the last layer.
9					
10	// in d	locumenta	tion, f	rom surf	ace to bottom
10	// 111 0	loculienca		Tom Surr	

NOTE: This ground profile has to be the same as profile of DRM leyrs and inner soil layers used in wave propagation model!

Jeremić et al.

Seismic Wave Field Development

3C, Inclined Plane Wave, Harmonic, Convolution

94	add wave field # 1 type inclined_plane_wave with	
95	anticlockwise_angle_of_SV_wave_plane_from x = 30	
96	SV_incident_magnitude = 10*m^2	
97	SV_incident_angle = 60	
98	SV_incident_frequency = 5/s	
99	<pre>motion_time_step = 0.005*s</pre>	
100	<pre>number_of_time_steps = 1001</pre>	
101	<pre>soil_profile_filename = "soil_profile.txt"</pre>	
102	soil_surface at z = 0*m	
103	unit_of_vs_and_vp = 1*m/s	
104	unit_of_rho = 1*kg/m^3	
105	unit_of_damping = absolute	
106	<pre>unit of thickness = 1*m;</pre>	

Jeremić et al.

3C, Inclined Plane Wave, Time Signal, Convolution

29	add wave field # 1 type inclined_plane_wave with
30	anticlockwise_angle_of_SV_wave_plane_from x = 0
31	<pre>SV_incident_acceleration_filename = "Kobe_acc.txt"</pre>
32	unit_of_acceleration = $1*m/s^2$
33	<pre>SV_incident_displacement_filename = "Kobe_disp.txt"</pre>
34	unit_of_displacement = $1*m$
35	SV incident angle = 15
36	<pre>add_compensation_time = 0.5*s</pre>
37	<pre>soil_profile_filename = "soil_profile.txt"</pre>
38	soil_surface_at z = 0*m
39	unit_of_vs_and_vp = 1*m/s
40	unit_of_rho = 1*kg/m^3
41	unit_of_damping = absolute
42	unit_of_thickness = 1*m;

Jeremić et al.

Seismic Wave Field Development

3C, Inclined Plane Wave, Geometry

Jeremić et al.

Seismic Wave Field Development

Generate DRM Input, Convolution

- Using developed wave fields
- Generate DRM input, effective forces Peff

232 generate DRM motion file from wave field # 1 hdf5_file = "DRMinput.hdf5";

Jeremić et al.

Seismic Wave Field Development

1C, 3×1C Seismic Wave De-Convolution

41	add	wave field # 1 with
42		acceleration filename = "Kobe acc.txt"
43		unit of acceleration = $1*m/s^2$
44		<pre>displacement_filename = "Kobe_disp.txt"</pre>
45		unit of displacement = 1*m
46		add_compensation_time = 2*s
47		motion depth = $0*m$
48		<pre>monitoring_location = within_soil_layer</pre>
49		<pre>soil profile filename = "soil profile.txt"</pre>
50		unit_of_Vs = 1*m/s
51		unit_of_rho = 1*kg/m^3
52		unit_of_damping = absolute
53		<pre>unit_of_thickness = 1*m;</pre>

Jeremić et al.

Generate DRM Input, 1C, 3×1C, De-Convolution

55	generate domain reduction method motion file
56	from wave field
57	<pre># 1 in direction ux</pre>
58	soil surface at z = 0*m
59	<pre>hdf5 file = "DRMinput Kobe.hdf5";</pre>

Jeremić et al.

Seismic Input into ESSI Model

Outline

troduction Motivation Seismic Ground Motions, Overview

Seismic Motions

Seismic Motion Observations Seismic Wave Field Development Seismic Input into ESSI Model

Conclusion

Jeremić et al.

Seismic Input into ESSI Model

Methods for Seismic Input, 1C, 3×1C, 3C/6C

- Relative accelerations
- Prescribed displacements
- Prescribed accelerations
- Free field column coupled with 2D models via dampers
- Domain Reduction Method

Jeremić et al.

Seismic Input into ESSI Model

The Domain Reduction Method (DRM)

- Work by Bielak et al. (2003) at CMU.
- DRM features:
 - General 3C seismic input (P, S, Love, Rayleigh, Stoneley...)
 - Nonlinear, elastic-plastic ESSI
 - Minimal outgoing waves, only radiation of structural oscilation energy
- Consistent replacement for seismic moment released from hypocenter with forces on a single layer of elements around ESSI system

Jeremić et al.

Seismic Input into ESSI Model

Domain Reduction Method

- Large physical domain is to be analyzed for dynamic behavior.
- Source of disturbance is a known time history of a force field $P_e(t)$.
- Source of loading, fault is far away from the local feature

Jeremić et al.

Seismic Input into ESSI Model

DRM

- Remove local feature, create a free field model
- Domain inside the boundary Γ is named Ω_0 .
- Outside boundary Γ , is Ω^+ .
- Outside domain Ω^+ is the same as in the original model,
- Simplification, is done on the domain inside boundary Γ.

Jeremić et al.

Seismic Input into ESSI Model

DRM

Equations of motions for a complete system

$$\left[\begin{array}{c}M\end{array}\right]\left\{\begin{array}{c}\ddot{u}\end{array}\right\}+\left[\begin{array}{c}K\end{array}\right]\left\{\begin{array}{c}u\end{array}\right\}=\left\{\begin{array}{c}P_{e}\end{array}\right\}$$

Jeremić et al.

Seismic Input into ESSI Model

DRM

Eq. of motions for each subdomain (interior, boundary and exterior of $\boldsymbol{\Gamma})$

Jeremić et al.

Seismic Input into ESSI Model

DRM

Separate previous equation into two domains $\boldsymbol{\Omega}$ (inside):

$$\begin{bmatrix} M_{ij}^{\Omega} & M_{ib}^{\Omega} \\ M_{bi}^{\Omega} & M_{bb}^{\Omega} \end{bmatrix} \left\{ \begin{array}{c} \ddot{u}_{i} \\ \ddot{u}_{b} \end{array} \right\} + \left[\begin{array}{c} K_{ij}^{\Omega} & K_{ib}^{\Omega} \\ K_{bi}^{\Omega} & K_{bb}^{\Omega} \end{array} \right] \left\{ \begin{array}{c} u_{i} \\ u_{b} \end{array} \right\} = \left\{ \begin{array}{c} 0 \\ P_{b} \end{array} \right\}$$
 and Ω^{+} (outside):

$$\left[\begin{array}{cc} M_{bb}^{\Omega +} & M_{be}^{\Omega +} \\ M_{eb}^{\Omega +} & M_{ee}^{\Omega +} \end{array}\right] \left\{\begin{array}{c} \ddot{u}_{b} \\ \ddot{u}_{e} \end{array}\right\} + \left[\begin{array}{c} K_{bb}^{\Omega +} & K_{be}^{\Omega +} \\ K_{eb}^{\Omega +} & K_{ee}^{\Omega +} \end{array}\right] \left\{\begin{array}{c} u_{b} \\ u_{e} \end{array}\right\} = \left\{\begin{array}{c} -P_{b} \\ P_{e} \end{array}\right\}$$

Jeremić et al.

Seismic Input into ESSI Model

DRM

For this separation to work one needs to enforce

- compatibility of displacements
- equilibrium, through action-reaction forces Pb

Jeremić et al.

Seismic Input into ESSI Model

DRM

- Simplified interior domain without local feature, u⁰_i, u⁰_b, u⁰_e and P⁰_b
- The equations of motion in the outside domain Ω^+ for the auxiliary problem:

$$\begin{bmatrix} M_{bb}^{\Omega +} & M_{be}^{\Omega +} \\ M_{eb}^{\Omega +} & M_{ee}^{\Omega +} \end{bmatrix} \left\{ \begin{array}{c} \ddot{u}_{b}^{0} \\ \ddot{u}_{e}^{0} \end{array} \right\} + \\ + \begin{bmatrix} K_{bb}^{\Omega +} & K_{be}^{\Omega +} \\ K_{eb}^{\Omega +} & K_{ee}^{\Omega +} \end{bmatrix} \left\{ \begin{array}{c} u_{b}^{0} \\ u_{e}^{0} \end{array} \right\} = \left\{ \begin{array}{c} -P_{b}^{0} \\ P_{e} \end{array} \right\} \\ \hline \end{array}$$

Jeremić et al.
DRM

Using second part of previous equation to obtain the dynamic force P_e as:

$$P_e = M_{eb}^{\Omega+} \ddot{u}_b^0 + M_{ee}^{\Omega+} \ddot{u}_e^0 + K_{eb}^{\Omega+} u_b^0 + K_{ee}^{\Omega+} u_e^0$$

Jeremić et al.

DRM

The total displacement, u_e , can be expressed as the sum of the

- free field u_e^0 (from the background, simplified model) and
- residual field *w_e* (coming from the local feature)

Change of variables

Superposition in the outside domain, not inside!

Jeremić et al.

Conclusion

Seismic Input into ESSI Model

DRM

Substitution into previous dynamic equations

Jeremić et al.

DRM

Move free field motions u_e^0 to the right hand side

Jeremić et al.

DRM

Substitute Pe

Jeremić et al.

DRM

The right hand side is the dynamically consistent replacement force, so called effective force, P^{eff} for the source forces P_e

$$P^{eff} = \left\{ \begin{array}{c} P_i^{eff} \\ P_b^{eff} \\ P_e^{eff} \\ P_e^{eff} \end{array} \right\} = \left\{ \begin{array}{c} 0 \\ -M_{be}^{\Omega+} \ddot{u}_e^0 - \mathcal{K}_{be}^{\Omega+} u_e^0 \\ M_{eb}^{\Omega+} \ddot{u}_b^0 + \mathcal{K}_{eb}^{\Omega+} u_b^0 \end{array} \right\}$$

Jeremić et al.

DRM

DRM features:

- Seismic forces Pe replaced by Peff
- P^{eff} applied only to a single layer of elements next to Γ .
- Only outgoing waves from structural oscilations
- Material inside Ω can be elastic-plastic
- Any wave field can be input
- We can also neglect the outside (Ω^+) problems thus reducing model size Θ Local feature

Jeremić et al.

Seismic Motions, Summary

- Realistic seismic motions
- Three translations, three rotations, 6C
- DRM used as an effective method for motions input
- ESSI analysis with 1C, $3 \times 1C$, and 3C/6C seismic motions

Jeremić et al.

Outline

ntroduction Motivation Seismic Ground Motions, Overview

Seismic Motions Seismic Motion Observations Seismic Wave Field Development Seismic Input into ESSI Model

Conclusion

Jeremić et al.

- Numerical modeling to predict and inform
- Education and Training is the key!
- The Road Ahead: Nonlinear ESSI in Practice
- Afternoon SMiRT workshop on Nonlinear ESSI in Practice
- http://real-essi.us

Jeremić et al.