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ABSTRACT 

The burst pressures of two vessels that were pressurized to failure were reported in WRC Bulletin 414 

(1996). Failure was observed in the cylindrical potion of the vessel. Analytical expressions for the 

pressure at plastic instability in a cylindrical shell were obtained for the material stress-strain curve. A 

comparison based on the Ramberg-Osgood representation showed remarkably good agreement with the 

experimental burst pressure, given the simple analytical form. A comparison to and discussion of results 

of a finite element analysis are also included. These results are part of an effort to collect different aspects 

of technical basis for the application of plastic instability load in the analysis of pressure vessels and 

piping in service at nuclear plants. 

INTRODUCTION 

The present paper discusses a plastic analysis technique mainly in the context of design by analysis of 

nuclear pressure components using the ASME Code [1] and related fitness-for-service evaluations using 

specialized guidelines.   

When pressurized components are subjected to excessive loading the highest load when failure 

occurs is typically controlled by one of two mechanisms. If the deformability of the material is limited, 

fast fracture may occur at the maximum load. With more deformable materials the component reaches a 

maximum load capacity when work hardening of the material gets balanced by destabilizing changes in 

geometry of the load bearing wall sections. That the highest load is controlled by plastic deformation 

effects does not necessarily mean that the subsequent failure (breach of pressure boundary) might not 

involve some elements of fracture. For example, in a typical tension test of pressure vessel steel, the 

ultimate strength is due to a plastic mechanism, but the subsequent failure is by fracture, for example by 

the well known “cup and cone” fracture that combines a shear fracture at the periphery with an overload 

failure due to internal voiding and rupture in the middle of the specimen. The term “ultimate load” is 

commonly used to denote the highest load that can be applied before failure occurs. 

The prediction of ultimate load is possible based on a suitable plastic analysis methodology [2]. 

The evaluation of the result then follows the applicable evaluation Code. In Section III of the ASME 

Boiler and Pressure Vessel Code, plastic analysis has several applications that use different definitions for 

the allowable load. Section III Subsection NB [1] references the design-by-analysis rules in Appendix 

XIII, which contains a definition of plastic analysis, namely  
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XIII-1300 (u) Plastic Analysis. Plastic analysis is that method which computes the structural 

behavior under given loads considering the plasticity characteristics of the materials, including 

strain hardening and the stress redistribution occurring in the structure. 

The ultimate load is called plastic instability load in Section III. The definition given is 

XIII-1300(w) Plastic Instability Load. The plastic instability load for members under 

predominantly tensile or compressive loading is defined as that load at which unbounded plastic 

deformation can occur without an increase in load. At the plastic tensile instability load, the true 

stress in the material increases faster than strain hardening can accommodate.  

Although this definition is contained in the general design-by-analysis rules of Appendix XIII, the 

only place where it is used is mandatory Appendix XXVII [1] of Section III for the purpose of Level D 

analysis of components in the context of plastic system analysis. Components, which would include 

piping, may be evaluated according to XXVII-3330using the plastic instability load determined by plastic 

analysis or experimental analysis. The applied load is limited to 70% of the plastic instability load. 

For non-nuclear pressure vessels, the Section VIII Div. 2 [3] rewrite after 2004 introduced a 

design method based on “plastic collapse load”, which is the same as what is called plastic instability load 

in Section III, and also the same as ultimate load. Although there were efforts to introduce design based 

on ultimate load into Section III of the ASME Code [1], to date the Section III Code committees have 

rejected this approach. 

On the other hand, a plastic collapse load based approach can be very well suited to address 

geometrically complicated degradation, such as limited wall loss because the methodology does not rely 

on somewhat subjective evaluation procedures like stress classification. The plastic collapse load 

evaluation requires only the load and initial geometry to be known.  The evaluation consists of comparing 

the specified operational load (or load combination) with the plastic instability load obtained by analysis, 

and ensuring that the latter is higher than the former by the required factor. Such an approach is used in 

fitness-for-service evaluation procedures, for example ASME FFS-1 [4] and in more specialized industry 

fitness-for-service guidelines, such as an option in the evaluation of thinned feeder pipes in CANDU 

reactors as described in [5]. 

Benchmarking the results of plastic instability analysis against experimental results is important 

to increase confidence in the method and identify potential areas that need special attention. Such results 

have been published on a number of different applications, for example for wall thinning in Carbon steel 

pipes [6], for tubes containing flaws [7], and in comparison to burst disk tests involving significant 

changes in geometry due to plastic deformation [8], [9]. The implications on using these methods for 

design were discussed in [9] and [10].  

The paper discusses a comparison between the plastic instability pressure obtained from an 

analytical formula for a cylindrical shell and the results of two burst tests that were published in the 

literature. The analytical formula includes the effect of plastic strain hardening. Close agreement is 

achieved. A comparison with the results of a finite element (FE) analysis are also included and discussed. 

TESTS 

Tests of two vessels by pressurization to failure were reported in WRC Bulletin 414 (1996) by Kalnins 

and Rana [11]. The vessels were cylindrical with an ASME 2:1 elliptical head at one end and a 

torispherical head on the other end. Testing the torispherical head was the actual main motivation of the 

experiment, The heads were formed from plate and welded on. The shell had a longitudinal weld seam. 

The material of shell and heads was carbon steel plate (SA-516 Gr. 70). The vessels were thin-walled 

with a D/t ratio of about 200, fabricated according to ASME Section VIII Div. 1 requirements.  
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The primary objective of the test was to evaluate the conservatism of the 1992 version of ASME 

Section VIII Div. 1 and Div. 2 design rules for torispherical heads. The report [11] provides detailed data 

on the geometry of the vessel as well as on tensile tests performed on the material. The vessels were 

instrumented with strain gauges and were pressurized in steps to failure. Figure 1shows the first vessel 

after completion of the test. The measured shell dimensions are given in Table 1, which also lists the 

measured tensile properties. 

Table 1: Dimensions of Tested PVRC Vessels [11] 

 Vessel 1 Vessel 2 

Cylindrical Shell Mean Radius, rm 30.16 in 30.20 in 

Cylindrical Shell Thickness (meas.), t 0.269 in 0.314 in 

Cylindrical Shell t/rm 0.00892 0.0104 

Cylindrical Shell Length 36 in 36 in 

Elliptical Head Type ASME 2:1 ASME 2:1 

Elliptical Head Thickness (nom) 0.31in 0.31 in 

Torispherical H. Knuckle Radius (meas.) 3.75 in 3.75 in 

Torispherical H. Crown Ins. Radius 59 in 59.5 in 

Torispherical Head Thickness (meas.) 0.25 in 0.32 in 

 Shell and Head Material SA-516 Gr. 70 SA-516 Gr. 70 

Measured Yield Strength, y 52.9 ksi 56.6 ksi 

Measured Ultimate Tensile Strength, u 77.5 ksi 84.4 ksi 

Measured Uniform Elongation, u 19.1% 17.8% 

 

 

Figure 1: PVRC Test Vessel 1 after Pressurization(from PVRC Bulletin 414[11]) 
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After the conclusion of each test, when failure had occurred, metallurgical examinations were 

performed to determine the failure mode and the originating site for the failure. Vessel 1 was determined 

to have suffered a brittle through-wall failure (leak) originating from one of the nozzles with lack of 

fusion in one of the attachment welds. The failure of the second vessel originated at the long seam of the 

cylindrical shell and resulted in a gross failure of the entire shell. The failure of Vessel 2 was considered 

ductile. Neither vessel failed in the heads. 

THEORETICAL BACKGROUND 

Based on the work of Considère [12], the point of tensile instability for plastic deformation can be derived 

from the condition that the increment of force sustained by a portion of the wall becomes zero. For a 

cylinder with closed ends under an applied pressure p, the hoop stress is the maximum tensile principal 

stress 1 =h  and is related to the internal pressure, p, by 

 𝑝   =
𝑡

𝑟𝑚
𝜎1 (1) 

where t and rm are the deformed thickness and mean radius of the shell, respectively. The condition of 

plastic instability allowing no increment in load, dp=0, then results in 

 𝑑𝜎1 = 𝜎1  (
𝑑𝑟𝑚

𝑟𝑚
−

𝑑𝑡

𝑡
). (2) 

Using the principal true plastic strain, 1 = drm/rm and the condition that plastic deformation leaves the 

volume constant, the structural instability condition becomes 

 
𝑑𝜎1

𝑑𝜀1
= 2𝜎1 (3) 

Let the true stress-strain curve be described with a power law (Ramberg-Osgood material)  

 𝜎𝑡 = 𝐶𝑅𝑂𝜀𝑡𝑝
𝑛 (4) 

Where t is the equivalent true stress, tp is the equivalent true plastic strain, n is the strain hardening 

exponent and CRO is the Ramberg-Osgood modulus. Relating the equivalent stress and strain at the point 

when Equation (3) is satisfied to the largest tensile principal stress and strain, the equivalent true stress at 

the ultimate pressure can now be calculated as 

 𝜎𝑡, 𝑒𝑞 = 𝐶𝑅𝑂𝜀𝑡, 𝑒𝑞
𝑛   =   𝐶𝑅𝑂  (

√3

3
)

𝑛

𝑛𝑛
 (5) 

Since (√3/3)n is less than unity, the equivalent wall stress in the cylinder at the point of instability 

will be less than the true ultimate stress, i.e. the instability point is predicted to occur at a lower stress than 

in a tension test. For a moderately thin shell, the first-order accurate expression for calculating the average 

true hoop stress is 

 𝜎𝑡, ℎ =   
2√3

3

𝜎𝑡, 𝑒𝑞

1+
1

2

𝑡

𝑟𝑚

   =   
2𝐶𝑅𝑂

1+
1

2

𝑡

𝑟𝑚

 (
√3

3
)

𝑛+1

𝑛𝑛
 (6) 

The ultimate pressure is then 

 

𝑝𝑢,𝑅𝑂 = 2𝐶𝑅𝑂 (
√3

3
)

𝑛+1
1

1−
1

4
(

𝑡0
𝑟𝑚0

)
2

𝑒−2𝑛

𝑡0

𝑟𝑚0
(

𝑛

𝑒
)

𝑛

 

(7) 

where t0 and rm0 are the initial shell thickness and mean radius, respectively. The ultimate strength, u, 

from a tensile test is given by 
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 𝜎𝑢 = 𝐶𝑅𝑂 (
𝑛

𝑒
)

𝑛

 (8) 

and thus, Equation (7) can be expressed as 

 

𝑝𝑢,𝑅𝑂 = 2 (
√3

3
)

𝑛+1

[
1

1−
1

4
(

𝑡0
𝑟𝑚0

)
2

𝑒−2𝑛
]

𝑡0

𝑟𝑚0
𝜎𝑢.

 

(9) 

Neglecting the second-order term in the thickness ratio in the denominator of Equation (9), the 

relationship between the ultimate pressure, pu,Cyl, and the ultimate tensile strength, u, of the same 

material, Equation (8), becomes 

 

𝑝𝑢,𝑐𝑦𝑙 ≈ 2  (
√3

3
)

𝑛+1
𝑡0

𝑟𝑚0
 𝜎𝑢.

 

(10) 

This expression was given by Gerdeen [13] and Rodabaugh [14] based on a derivation by Cooper [15]. 

Rodabaugh noted in [14], that Equation (10) and similar ones “ have sound theoretical foundations and 

check well with burst test data on pipe.”.  

For piping and pressure vessel carbon steels, the value of n is about 0.15 to 0.2, and the factor 

2(√3/3)n+1is between 1.03 and 1.07, or close to unity. This is consistent with Rodabaugh’s observation 

[14] that “… the following much simpler equation also checks well with burst test data on pipe...” 

 

𝑝𝑢,𝑠𝑖𝑚𝑝 =  
𝑡0

𝑟𝑚0
 𝜎𝑢

 

(11) 

Using a similar derivation as that to arrive at Equation (10), an expression for the ultimate 

pressure of a sphere, pu,sph, can be obtained giving   

 𝑝𝑢,𝑠𝑝ℎ ≈ 2 (
1

3
)

𝑛 𝑡0

𝑟𝑚0
 𝜎𝑢. (12) 

Equation (10) and (12) are used to calculate analytical estimates of the ultimate pressure. 

ANALYSIS 

The formula for the plastic collapse load of a cylinder, Equation (10), was used to calculate the burst 

pressures for the two vessels based on plastic instability using the measured dimensions and tensile 

properties. The true stress-strain curve was assumed to be described by a power law with hardening 

exponents n = 0.175 for Vessel 1 and n = 0.164 for Vessel 2, as derived from the uniform tensile 

elongations of tensile tests of the plate material used for the vessels.  

For comparison, a finite element (FE) analysis of the entire vessel shell was performed. The 

model and boundary conditions are shown in Figure 2. The model is created from axisymmetric shell 

elements that are capable of implementing nonlinear material and a large deformation / large strain 

formulation (the left picture in Figure 2 shows a view that is expanded to a full 360°). A quarter model 

meshed with 8-noded quadrilateral shell elements was also analyzed. On the right, Figure 2 shows that 

internal pressure is applied to all surfaces, and that displacement boundary conditions are used to prevent 

rigid body motions but not otherwise restrict the deformation in any way. The analysis uses large 

deformation options and is based on true stress and true strain. The plastic instability load is determined 

as that load where the FE software cannot establish equilibrium under a further increase in load. In 

practice, that means that the implicit FE solver fails to converge beyond the plastic instability load. 

Elastic-plastic analysis based on a representation of the measured stress-strain curves from tensile 

tests is performed. For this purpose measured engineering stress-strain curves given in [11] were digitized 

and converted into true stress – true strain curves (shown below in the results Section of this paper). Two 

material models that are available in the FE software (ANSYS 19.0), multilinear isotropic hardening and 
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power law isotropic hardening are compared. Multilinear isotropic hardening is used to implement a close 

approximation of the measured stress-strain curves, while is power law isotropic hardening a fit to the 

measured curve is performed. 

 

  

Figure 2: Finite Element Model and Boundary Conditions 

RESULTS AND DISCUSSION 

Comparison of Experimental Ultimate Pressure and Prediction Based on Failure Mechanism 

The experimental outcomes indicated that in both cases failure occurred in the cylindrical portion of the 

vessel. To compare the experimental ultimate pressure with the appropriate analytical result, it was 

therefore decided to use Equation (10) for a cylinder. The analytical and experimental ultimate (failure) 

pressures in Table 2 show that the two are in good agreement. The results are within 15% of each other. 

Test vessel 1 failed slightly below the predicted failure pressure of the cylinder. However, this failure 

occurred at a flaw in the nozzle weld and was only local (leak) which means that the failure pressure of 

the entire vessel was not reached at this point. Test vessel 2 failed at a higher pressure than predicted 

based on a cylindrical geometry. This indicates that there could be an effect of the attached heads on 

ultimate pressure.  

Table 2: Plastic Instability Loads of PVRC Vessels and Analytical Result for Cylinder 

Plastic Instability Load Vessel 1 Vessel 2 

Ultimate 

Pressure 

Experimental WRC 414 (1996) 700 psi 1080 psi 

Analytical Cylinder (10) 719 psi 923 psi 
 

In elastic analysis, a decay length of 2.5√𝑟𝑚𝑡, is used for cylindrical shells, where rm is the mean 

radius and t is the thickness. The decay length describes how far from the edge (global discontinuity) of a 

shell axisymmetric edge effects have decayed to a small disturbance of the stress distribution in the shell. 

For the present cylindrical shell, the elastic decay length is about 8 in. Since the cylindrical shell is 36 in 

long, one would expect that the middle 20 in of it would be undisturbed by effects from the heads. 

Whether this expectation is verified for the large deformation plastic state of the shell near the plastic 

instability load is investigated by performing a finite element analysis of the vessels.  
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Comparison of Experimental Ultimate Pressure and FE Vessel Simulation 

The ultimate pressure for the two test vessels is compared with the result of FE analysis in Table 3. The 

ultimate pressure obtained from FE is seen to be significantly higher than that from the tests. A review of 

the deformed shape of the vessel showed that near the point of plastic instability the vessel had deformed 

into a practically spherical shape. Failure in analysis did, therefore, not occur with cylindrical geometry 

but rather in a nearly spherical shape. Evidently, elastic decay length does not apply to the present large 

deformation plastic condition. The transition to a sphere represents a case of geometric strengthening, i.e., 

the sphere has a higher ultimate pressure than the cylinder. It is also noted that the total surface area of the 

vessel is close to that of a sphere with 30 in radius. This will be explored further later in this Section. 

Table 3: Plastic Instability Loads of PVRC Vessels Compared with FE Result 

Plastic Instability Load Vessel 1 Vessel 2 

Ultimate 

Pressure 

Experimental WRC 414 (1996) 700 psi 1080 psi 

FE, Vessel Model 1128 psi 1417 psi 

 

Since the test vessels failed at a lower pressure than the plastic instability load, it is concluded 

that both vessels failed by exhaustion of ductility rather than plastic instability. Section VIII Div. 2 gives 

a limit on the equivalent At the pressures shown in Table 2 the shape of the vessel is still close to 

cylindrical. This is consistent with the post-test image (Figure 1).  

 

Figure 3: Equivalent Plastic Strain in Shell of Vessel 2 FE Model and Failure Line 

Section VIII Div. 2, Part 5 [3] has a strain based failure criterion for the equivalent plastic strain, 

p,eq, of the general form 

 𝜀𝑝,𝑒𝑞 ≤  𝜀𝐿𝑢𝑒
−

𝛼𝑆𝐿
1+𝑚2

(𝑆𝑅−
1

3
)
 (13) 

where SR is the triaxiality stress ratio, i.e. the ratio of average hydrostatic stress to von Mises equivalent 

stress. Lu is the uniaxial failure strain from a tensile test, determined by the rules of Part 5, SL is a 

material dependent constant and m2 is calculated from the ratio of room temperature yield to ultimate 

strength, again material dependent as specified by the rules of Part 5 of [3]. The evaluation was performed 

following Part 5, but the calculated strain limit did not lower the failure pressure significantly.   

In Figure 3, the equivalent plastic strain obtained from a location near the midpoint of the cylindrical shell 

of Vessel 2 is plotted against the triaxiality stress ratio, SR, at the same location. Only Vessel 2 is shown 
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because the failure of Vessel 1 was governed by a flaw. It can be seen that at low load and deformation, 

SR has the value expected for a thin cylinder, √3 3 ≈⁄  0.577. As the load and deformation increases, the 

triaxiality stress ratio approaches the value for a thin sphere, 2/3 ≈ 0.667.  

For illustration, the failure criterion is also shown. Equation (13) was adjusted with constants different 

from those in [3] for ferritic material, namely SL = 4, indication greater sensitivity to multiaxial stress 

states, and Lu = 0.17, i.e. lower strain at failure. The resulting failure curve would indicate failure just 

below 1103 psi, versus an experimental failure pressure of 1080 psi. Since failure in the test of Vessel 2 

occurred in the longitudinal seam of the cylindrical shell, it is quite possible that the cause was lower 

ductility of the weld material relative to base material. This may explain that the constants for Equation 

(13) had to be adjusted and a possible higher sensitivity to the triaxial stress ratio. 

Since the nozzles are adequately reinforced and, if properly welded (unlike Vessel 1), are not expected to 

affect the failure pressure, it is expected that the present model adequately represents the failure 

mechanism and including the nozzles in the model is not necessary. 

Effect of Stress-Strain Curve Modelling in FE Simulation 

To investigate the effect of the material description used in the FE analysis, two models were compared. 

One was the multilinear description of the measured stress-strain curve (converted to true stress-strain) 

and the other a power law description similar to Equation (4), Figure 4. Although the two curves differed 

particularly near the onset of yielding, the burst pressures were almost identical. This confirms that good 

agreement is achieved with the Power Law representation by matching the ultimate strength (Equation 

(8)) and the approximate shape of the stress-strain curve at higher strains. 

Table 4: FE Plastic Instability Loads for Different Material Models 

Plastic Instability Load Vessel 1 Vessel 2 

Ultimate 

Pressure 

FE, Vessel Model, Multilinear 1128 psi 1455 psi 

FE, Vessel Model, Power Law 1111 psi 1417 psi 

 

 

Figure 4: Comparison of True Stress – True Strain Curves for FE Material Models 

When using the multilinear representation, it was found to be important that the stress-strain 

curve is discretized finely enough in the region of interest. In the present case, 20 stress-strain points were 

used along the curve. 

Effect of Vessel Length in FE Simulation 

The elastic-plastic analysis for the present vessel predicted a failure pressure above that of a simple 

cylindrical vessel. This is attributed to the constraint from the heads, and one should logically expect that 
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a vessel with a long enough cylindrical shell would have the ultimate pressure of a cylindrical shell. The 

results in Table 5 show that this is the case. The ultimate pressure of the present vessel with the 

cylindrical shell elongated to 180 in obtained by FE analysis agrees almost perfectly with that from the 

cylindrical shell Equation (10). It is also shown that the actual vessel with a 36 in shell has a failure 

pressure very close to that of a spherical shell with 30 in radius as suggested by the relatively close 

agreement is surface area between the present vessel and such a sphere that was mentioned earlier.  

Table 5: Plastic Instability Analytical and FE Results 

Plastic Instability Load Vessel 1 Vessel 2 

Ultimate 

Pressure 

FE, Vessel Model 1128 psi 1417 psi 

Analytical, Sphere, eq. (12) 1119 psi 1450 psi 

FE, Elongated Vessel Model 718 psi 926 psi 

Analytical, Cylinder , eq.(10) 719 psi 923 psi 

 

A variation of the shell length resulted in the change in ultimate pressure indicated in Figure 5. 

The ultimate pressure of a cylinder is approached closely with a shell length of about 70 in. This 

corresponds to a shell length from each of the shell/head discontinuities of about 1 to 1.5 times the shell 

radius, which one could call the decay length of the present elastic-plastic solution. This is very 

significantly longer than the decay length known from elastic shells. 

  

Figure 5: Effect of Shell Length on Ultimate Pressure  

CONCLUSION 

The burst pressures of two vessels that were pressurized to failure were reported in WRC Bulletin 414 

(1996). Failure was observed in the cylindrical potion of the vessel. Analytical expressions for the 

pressure at plastic instability in a cylindrical shell were obtained for various representations of the 

material stress-strain curve. A comparison based on the Ramberg-Osgood representation showed 

remarkably good agreement with the experimental burst pressure, given the simple analytical form.  

Finite element analysis of the vessels showed that the predicted ultimate pressure is higher than that of the 

cylindrical shell. The reason was determined to be that the deformation of the cylindrical shell is 

influenced by the constraint exerted by the heads. It was also determined that the failure of the tested 

vessels was determined by the onset of ductile rupture rather than pure plastic collapse. It is likely that 

reduced ductility in the region of the longitudinal weld was the cause of failure, since the criterion for 

“local failure” from Section VIII Div. 2 indicated a higher rupture strain for base material.   
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This result is part of an effort to collect different aspects of technical basis for the application of plastic 

instability load in the analysis of pressure vessels. 
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