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ABSTRACT

In tsunami fragility assessments, the evaluated values of the inundation depth or debris impact speed usually
contain many zero values. In this research, we investigated methods that can be applied to data with many
zeros. In addition, we applied these methods to the actual analysis results at a virtual site. We modeled the
relationship between tsunami height and inundation depth by a two-part model and debris impact speed by
k-means clustering and the Gaussian mixture model. Both methods were able to partially model the
simulation results, but they are not complete and further research is required.

INTRODUCTION

In tsunami fragility assessments, the evaluated values of inundation depth or debris impact speed usually
contain many zero values. This is a unique characteristic of tsunami fragility assessments since the
evaluated values for seismic fragility assessments, such as peak ground acceleration, are always positive.

Kihara et al. (2019) conducted tsunami risk assessments at a virtual site. The virtual site is a non-
existent nuclear power plant located on the Pacific coast of the Tohoku region of Japan (Figure 1). Kihara
et al. (2019) evaluated the earthquake occurrence probability at seven earthquake source regions (Figure 1)
and the annual frequency of exceedance of tsunami height.
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Figure 1. Virtual site location (left) and earthquake source regions (right).
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APPLICATION TO INUNDATION DEPTH
Objective

Takahashi et al. (2020) conducted tsunami inundation simulations at the virtual site. The virtual site has
two ground levels (T.P. (Tokyo Peil) +7 m and T.P. +15 m), and it has a seawall with a height of T.P. +27
m (Figure 2). Takahashi et al. (2020) numerically evaluated tsunami inundation depths at several locations
(Figure 2) at the virtual site under five tsunami heights (T.P.+31 m, 35 m, 39 m, 43 m, and 47 m) with 7 to
21 earthquake source regions for each tsunami height.

The numerical results of Takahashi et al. (2020) contain many zero values (Figure 3). We
investigated and formulated a model that can be applied for modeling these inundation depth datasets with
many zero values.

In this research, only inundation depths at locations A to N were used (Figure 2). Therefore, the
elevations of the locations used in this research are all T.P. +15 m. Also, we only use the inundation depths
with tsunami heights of 31 m to 39 m since there was no location where the inundation depth was zero
when the tsunami heights were 39 m to 47 m.
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Figure 2. Virtual site topography and initial position of debris (left). Locations where inundation depths
were evaluated. In this research, only inundation depths at locations A to N were used (right).



26" International Conference on Structural Mechanics in Reactor Technology
Berlin/Potsdam, Germany, July 10-15, 2022
Division VII

Tsunami Height = 3Tm Tsunami Height = 35m

o

-]
o
-]

o

=
o
=]

Frequency

o

=
=
S

Frequency

o

LX)
o
LX)

o

0 0
0 5 10 15 0 5 10 15
Inundation Depth (m) Inundation Depth (m)

Zero values Zero values

Tsunami Height = 39m

Frequency
o o
[=>] [=-]

o
=

<}
Mo

0 — =T

0 5 10 15
Inundation Depth (m)

There is no zero value

Figure 3. Histogram of inundation depth for each tsunami height using all data from locations A to N.

Method

According to Min and Agresti (2002), there are two major methods for modeling continuous data with
many zeros. The first is the Tobit model (Tobin, 1958) and the second is the two-part model (Duan et al.,
1983). Since inundation depths can be modeled with the log-normal distribution (Takahashi et al. 2020),
we adopted the two-part model in which we can model the positive data with the log-normal distribution.

The probability density function (PDF) of the two-part model is the sum of the zero data part and
the positive data part. The positive data part can be modeled with the log-normal distribution. The ratio of
the zero data part and the positive data part can be modeled by the logit function using logistic regression.

Equation (1) shows the PDF of inundation depth, and equation (2) shows the probability that the inundation
depth is greater than 0.
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whereas
D: Inundation depth (m)
f(D): PDF of D
p: Probability that D > 0
6(D): Dirac’s delta
R,,(H), B: Parameters of positive D distribution (log-normal distribution)
H: Tsunami height (m)
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whereas

k, Hy: Parameters of the model (logit function) of p
BY*: Logarithmic standard deviation of epistemic uncertainty factors
X: Standard normal probability variate for logistic regression confidence

Result

Division VII
(2)

Figure 4 shows the regression results at locations J, K, M, and N. Locations J and K have similar curves,
probably because the two locations are close together. On the other hand, locations M and N have different
curves even though they are close to each other. This is probably because these places are in front of the
seawall, and the results differ depending on whether the tsunami enters from the north side or the south side
of the seawall.

Regression calculations did not converge for locations A to I and L. This is because the inundation
rate at the tsunami height of 31 m is 0%, or the inundation rate at the tsunami height of 35 m is 100%. This
suggests that the tsunami heights used for this research were not sufficient for evaluating these locations.
Also, further research is needed on the validity of modeling with the logit function, the effect of the site
topography, and generalization.

; Location J o i Location K o
0.8 0.8
® ©
© ®
s 0.6 < 0.6
& B
204 204
= S
£ £
02 O Simulated data 0.2 m} Simulated data
Logistic regression model Logistic regression model
oL 0C
30 32 34 36 38 40 30 32 34 36 38 40
Tsunami height (m) Tsunami height (m)
] Location M o i Location N -
’/_ = — =
0.8 0.8
© ©
& &
s 0.6 O < 0.6
® B
2o4 To4
=1 =]
£ =
02 O Simulated data 0.2 O Simulated data
Logistic regression model Logistic regression model
- _
0 0
30 32 34 36 38 40 30 32 34 36 38 40

Tsunami height (m)

Tsunami height (m)

Figure 4. Regression results at locations J, K, M, and N.
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APPLICATION TO DEBRIS IMPACT SPEED
Objective

Kaida and Kihara (2020) conducted numerical simulations of debris motion tracking (hereinafter “debris
tracking simulation™) at the virtual site. The tsunami flow field was calculated using a two-dimensional
shallow water model. A vehicle (height 2.0 m, 2.0 m, length 4.8 m, mass 2500 kg) is considered tsunami-
borne debris. Six hundred debris elements (200 debris elements for each of three initial positions) were
considered for each debris tracking simulation, and 540 cases (54 epistemic uncertainty cases with 10
Monte Carlo simulations) were calculated for each tsunami scenario. (Figure 5)

The debris tracking simulation result of Kaida and Kihara (2020) contains many zero values with
some near-zero values (Figure 6). To properly model the debris impact speed distribution, we investigated
methods of distinguishing near-zero values from other positive values.
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Figure 5. Initial positions of debris (yellow rectangular) and the SSCs (Structures, Systems, and
Components) to evaluate debris impact speed (red rectangular with numbers).
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Figure 6. Normalized debris impact speed distribution at SSC (1) in Figure 5 when the tsunami height is
39 m (left) and 43 m (right).
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Method

In this research, we applied k-means clustering and the Gaussian mixture model (GMM) for the debris
impact speed distribution. The k-means clustering is a method for clustering data based on the distance
from the geometric center of each cluster. GMM is a model that expresses and clusters data as a weighted
average of a Gaussian distribution. (Figure 7)

Clustering was performed in the four cases shown in Table 1. In each case, both k-means clustering
and GMM were used.

Cluster A geometric center

° ® [ Cluster A Gaussian distribution

x Cluster B Gaussian distribution

Cluster B geometric center

Figure 7. Image diagram of k-means clustering (left) and Gaussian mixture model (right).

Table 1. Clustering cases.

Case Axis for clustering Value to replace with zero value (m/s)
1 Linear axis -

2 Logarithmic axis 10"

3 Logarithmic axis 10!

4 Logarithmic axis 0.5

Result

Figure 8 shows the clustering results of debris impact speed at SSC (1) with the tsunami height of 43 m.
Case 1 shows good result with both k-means clustering and GMM, but assuming a linear normal distribution
for the debris impact is not appropriate. Cases 2 and 3 show almost the same result for GMM and a slightly
different result for k-means clustering, and case 3 has a better result. In case 4, the mode value of the log-
normal distribution is shifted to the right compared to case 3, which is more consistent with the data. Case
4 shows a good result with both k-means clustering and GMM, but it is necessary to explain the reason to
replace the zero value with 0.5 m/s. In addition, it is necessary to analyze the reason why near-zero values
are observed in the debris tracking simulation.
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Figure 8. Clustering results at SSC (1) when the tsunami height is 43 m. The red lines denote the
perpendicular bisector of each geometric centers of k-means clusters.

CONCLUSION

We investigated and formulated methods to model tsunami fragility assessment-related data containing
many zero values, such as tsunami inundation depth and debris impact speed. In addition, the model was
applied to the actual analysis result at the virtual site. The inundation depth was modeled with the two-part
model with the logit function. The debris impact speed was modeled by k-means clustering and GMM.
Both methods were able to model the simulation results partially, but they are not complete and further
research is required.
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