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ABSTRACT 

 

The soil input parameters typically needed for Finite Element (FE) analysis of a nonlinear Soil-Structure-

Interaction (SSI) system in commercially available computer programs do not often correspond one-to-one 

to the parameters typically randomized to control nonlinear soil behavior in a traditional Site Response 

Analysis (SRA). The material shear stress-strain backbone curve is usually required as direct input in an 

SSI FE analysis program instead of low-strain properties and strain-dependent modulus reduction curves. 

The non-Masing damping curves may also be needed as input. These input parameters are not fully 

independent, and the randomization scheme used to support a probabilistic analysis framework should 

account for the underlying correlation. This article provides a computationally efficient procedure for 

randomization of the soil input parameters often needed for nonlinear FE analysis of SSI systems. The 

randomization scheme presented can be implemented using either Latin Hypercube Simulation (LHS) or 

the more traditional Monte Carlo Simulation (MCS). An example case study using LHS is presented to 

generate realizations of stress-strain backbone and damping curves, and the stability of the simulated soil 

response distributions is compared using two randomized samples of different sizes. The technique is 

demonstrated in a case study using probabilistically randomized FE simulations of a layered soil column 

excited by input motion at depth and comparing the distributions of surface motion responses. 

 

INTRODUCTION 

 

The seismic response of layered soil is often treated probabilistically in both SRA and SSI applications to 

account for uncertainty and variation of site geomaterial properties. When modeling the nonlinear behavior 

of geomaterials using approaches that utilize equivalent-linear material properties, randomization 

techniques developed for probabilistic SRA have been adopted to probabilistic SSI with relative ease. 

However, when defining geomaterial shear behavior using explicitly nonlinear hysteretic material 

properties as input, adjustments to the randomization methodologies developed for probabilistic SRA can 

significantly improve the pre-processing convenience for the probabilistic SSI analyses that rely on finite 

element (FE) formulations.  

 

It is common in SRA to define the strain-dependent degradation in soil material shear stiffness using 

G/Gmax curves, where Gmax is the initial shear stiffness that corresponds to the soil low-strain shear-wave 

velocity (Vs). Strain-dependent damping is also considered via damping curves. Typical randomization 

procedures used in traditional SRA applications create realizations of Vs values, G/Gmax curves and damping 

curves (Darendeli (2001)). However, the process for randomizing the G/Gmax curves is needlessly 

inconvenient in those SSI analysis applications in which the software directly uses the material shear stress-

strain backbone curve at discrete data points rather than Vs values and G/Gmax curves. The defining 
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parameters for nonlinear backbone curves are: (1) the initial soil shear stiffness Gmax, (2) the soil shear 

strength τmax, and (3) the change in shape with shear strain γ until the stress is asymptotic to τmax. Figure 1 

illustrates the relationship between these parameters. Once the stress-strain curve is defined, it is input to 

the FE program as discrete stress-strain data points for the expected strain range of the soil response. 

 

 
Figure 1. Representation of Soil Nonlinear Behavior through Shear Stress-Strain Backbone Curve 

 

METHODOLOGY DESCRIPTION 

 

The proposed methodology consists of the following four steps that are implemented directly on the shear 

stress-strain backbone curve coordinates: 

 

1. Generate a random shear strain factor based on G/Gmax; apply it to the strain ordinates. 

2. Generate a random stress factor based on low strain Gmax and τmax; apply it to the stress ordinates. 

 

The following sections describe each step. 

Randomization of the Strain Ordinates 

The empirical G/Gmax soil curves are typically obtained by fitting a predefined shape to the measured test 

data which are usually obtained at small strains. For a given soil material, the G/Gmax curve is a function of 

shear strain – typically represented by a power-law relationship. For example, the hyperbolic model, 

patterned after Darendeli (2001), is defined by: 

 
�

����
= �

��� 		
�
�      (1) 

 

where � is the reference strain corresponding to G/Gmax = 0.5 and a is a curvature coefficient. Both 

� and a are obtained by fitting the G/Gmax curves to laboratory test data for a given soil. Darendeli (2001) 

also suggested upper bound and lower bound values for G/Gmax curves.  

 

Evaluation of the range of the G/Gmax values observed in experimental test data, as well as the generic 

range suggested in the literature, such as Darendeli (2001), indicates a relatively constant logarithmic 

standard deviation in the strain ordinates at a given G/Gmax value over the majority of the strain range in the 

logarithmic space (except at very low and high strains). This value can be estimated based on the range of 

� indicated by geotechnical test data for a given soil or, in the absence of soil-specific test data, the generic 

estimates of Darendeli (2001). The strain ordinate randomizing factors are applied to the soil stress-strain 

base curve to scale all strain ordinates equally. The resulting stress-strain curves include the desired 

variability band in G/Gmax. This technique alleviates the need to constrain the G/Gmax to be between 0 and 
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1 if they are randomized directly.  In addition, it includes the corresponding variability in Gmax, which is 

discussed in the next section. Note that the randomization of the strain ordinates does not need to determine 

� or other parameters in Equation (1).  

Randomization of Stress Ordinate at Low Strain 

The low-strain shear modulus Gmax is the initial slope of the stress-strain curve. This initial slope is the 

product of Vs
2 and material mass density. Considering that the variability of the mass density is negligible 

compared to the variability in soil shear-wave velocity, the logarithmic standard deviation of Gmax is about 

twice that of Vs
.  

 

Since the randomization of the strain ordinate shifts all the data points in the stress-strain backbone 

curve right or left, it results in partial randomization of the initial shear strain Gmax. Therefore, the stress 

ordinate randomizing factor should include only the additional variability required to achieve the target 

variability in Gmax. The stress and strain ordinate randomization factors are independent. Therefore, the 

target logarithmic standard deviation of Gmax should equal the square root of the sum of the squares (SRSS) 

of the logarithmic standard deviations in the strain and low-strain stress factors. The low-strain stress factor 

standard deviation is calculated using this SRSS relationship from the logarithmic standard deviations of 

Gmax and that of the strain randomization factor (previous section). It is then used to generate a randomized 

sample of low-strain stress adjustment factors and used to modify the stress ordinates as described in the 

next section. The variability in Gmax is independent of G/Gmax, which is represented by �. However, it is 

noted that the implementation of the proposed sampling scheme introduces a partial negative correlation 

between their sampled values. This artificial correlation is weak and not a significant consideration so long 

as the low-strain stress ordinate factor standard deviation represents the majority of the standard deviation 

in Gmax, which is typical.  

 

Randomization of Stress Ordinate at Soil Shear Strength 

 

Laboratory soil tests are usually performed at small strains and do not account for the soil at large strains. 

Therefore, the treatment of soil behavior with predefined fitted curves such as the Darendeli (2001) 

hyperbolic model for applications in which large soil strain is expected may be invalid and the mean and 

randomized G∕Gmax curves of a soil layer can produce unreasonably high or low strengths at large strain 

values. To avoid this problem, the stress-strain curve should be constrained by the material shear strength. 

The shear strength can be obtained from direct shear tests or triaxial compression tests on retrieved samples. 

In the absence of direct shear strength test data, the Mohr-Coulomb shear strength model can be used to 

estimate the geomaterial shear strength. This model uses the internal friction angle and cohesion intercept 

to estimate the shear strength. 

 

The logarithmic standard deviation of the geomaterial shear strengths should be obtained from the 

site-specific test results if available. In the absence of such test data, generic published data may be used. 

For example, Hoek and Brown (2018) provide standard deviations for sites with different rock mass ratios 

(RMR) and geologic strength indices.  

 

Transitioning the Stress Ordinate Factors from Low-Strain to Shear Strength 

 

For a randomized realization of the shear stress-strain curve, the stress ordinates at low strain and at τmax 

should be sampled assuming perfect correlation since a stiffer soil is typically associated with a higher shear 

strength in nature. Once they are sampled, they should be combined to obtain the stress ordinate factor at 

any strain following the relationship below: 

 

Stress randomization factor at point i =�. ���� + �. �1 − �����  (2) 
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where A is the low-strain stress ordinate factor, B is the τmax stress randomization factor, and n is the 

extent of softening at point i compared to the initial stiffness (i.e., � ����⁄ |�). 
 

Randomization of Soil Damping 

 

In addition to the soil stress-strain behavior, damping should also be appropriately accounted for in a 

probabilistic SRA or SSI analysis. Traditionally, nonlinear SRA software tools have implemented the 

hysteretic soil damping using the Masing Unloading/Reloading rules defined in Kramer (1996). However, 

the Masing rule is believed to overestimate hysteretic damping compared to the reference damping curves 

in most cases, especially at large shear strains. Therefore, it is recommended to use non-Masing hysteretic 

damping algorithms in explicit nonlinear analysis. The capability to fit any damping curves is offered by 

non-Masing algorithms, and realizations of the input damping curves can be used to account for uncertainty 

in hysteretic damping.  

 

Test data suggests that the standard deviation of damping increases with soil strain, �. Darendeli 

(2001) suggests the following relationship to estimate the standard deviation for material damping ratio, 

 !: 

 

 !��� = "#$% + "#$& . '���     (3) 

 

where D is the mean estimate of material damping curve, and (�) and (�* are parameters that relate 

standard deviation to the mean estimate of material damping ratio.  

Correlation Between Sampled Random Variables 

Correlation between the randomizing factors in each geomechanical unit, based on the expected physical 

behavior of the soil materials, is proposed as follows: 

 

• Stress factors at low-strain and +��� have a strong positive correlation and should be modeled 

as perfectly correlated.  

•  � and non-Masing damping have a strong negative correlation. A softer material dissipates 

more hysteretic energy. Therefore, they should be modeled as perfectly inversely correlated.  

• The other variable pairs within the same geomechanical unit should be modeled as uncorrelated.  

 

Across the different geomechanical units within a soil profile, a two-step (i.e., stress and strain 

ordinate) sampling of Gmax is proposed as follows: 

 

• The stress ordinate randomizing factors should be perfectly correlated across all units 

considering that most of the soil materials in a stiffer and stronger soil profile are also stiffer and 

stronger than the corresponding materials in a weaker soil profile. 

• The strain ordinate randomizing factors should be uncorrelated across all units since there is no 

physical evidence of G/Gmax dependence across different materials in a soil profile. 

 

This implementation scheme results in a partial correlation between the sampled Gmax for adjacent 

layers. Since the randomizing factors for Gmax are the product of randomizing factors for the stress and 

strain ordinates, this partial correlation is strong given the typically higher variability in the former (which 

are modeled as perfectly correlated) than the latter (which are modeled as uncorrelated).  
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Pairing of Randomization Multipliers 

The pairing of the randomization multipliers of independent random variables has historically been 

performed by the random ordering of the randomizing multipliers for each variable. Each SSI model 

realization from 1 to N picks a random bin number from 1 to N for each random variable where N is both 

the number of SSI model realizations and the number of realizations of individual random variables since 

these two quantities must be equal. Alternatively, the pairing has also been performed using space-filling 

algorithms that maximize the coverage of the multi-dimensional probability space in the aforementioned 

matrix while maintaining statistical independence. Either approach or a mix thereof can be used. For the 

case study presented in this paper, a space-filling design for the pairing of random variable sets is used 

since it can typically achieve a statistically stable design using a smaller sample size. The pairing of the 

randomization factors of dependent variables which are modeled as fully correlated should be done such 

that the sampling bin numbers for each realization are either the same or opposite to each other for positive 

and negative correlation, respectively.  

 

Truncation of Sampling Distributions 

 

The tails of probability distributions are often approximate fits to data and should be truncated where this 

approximation can lead to sampled output not supported by the data, logic, or both. A sampling truncation 

between ±1.65 times the standard deviation corresponds to the central 90% of the probability mass and 

often achieves adequate representation of the variability range while avoiding unrealistic extremes for 

typical sites. This truncation threshold is used in the case study presented herein. 

 

CASE STUDY 

 

This case study evaluates the implementation of the randomization scheme explained above on a realistic 

soil profile. Two randomized samples with 30 and 60 sample sizes are used to evaluate the statistical 

stability of the results using the LHS technique. 

 

Model Description 

 

The SSI model in this case study is developed using LS-DYNA (2017) by combining a nonlinear single-

degree-of-freedom (SDOF) of a structure and a plane-strain FE model of a unidimensional (1D) soil 

column. The structure model consists of a nonlinear SDOF spring-mass-dashpot system with an initial 

spring stiffness of 350 kip/ft, a mass of 0.320 kip-s2/ft, and a dashpot damping of 0.207 kip-s/ft. The SDOF 

spring is connected to the soil column at 11.4' below the soil ground surface. The input motion is applied 

at the base of the soil model in a single direction, simulating the horizontal ground motion. Figure 2 shows 

a schematic elevation view of the model. The soil domain in this case study is modeled with 11 unique 

geomechanical units. The site layering discretization for the SSI FE model and the corresponding 

geomaterial parameters are presented in Table 1. Some units are further split into sub-layers and/or 

elements. The nonlinear response of the soil is simulated using the hysteretic plasticity model in LS-DYNA. 

Transmitting boundary conditions are applied at the base and sides of the soil model to prevent the reflection 

of the outgoing seismic waves and to model an effectively "infinite" domain. This material model is a multi-

yield-surface plasticity model that takes as its primary input the material shear stress versus shear strain 

coordinates to build the plasticity yield surface. The hysteretic response of the material under shear loading, 

i.e., unload-reload, is defined using reference damping curves and the non-Masing rule. The G/Gmax and 

non-Masing damping curves assigned to each geomechanical unit are plotted in Figure 3. 

 

Table 2 summarizes the logarithmic standard deviation of the randomizing factors for the shear 

stress-strain curves. The logarithmic standard deviations of the shear-wave velocities and shear strength are 

obtained from geotechnical data. The logarithmic standard deviations of the strain ordinate � is obtained 
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by examining the distribution band of G/Gmax curves obtained from test data. The Gmax standard deviations, 

 ����, are twice the shear-wave velocity standard deviations,  ,-. The standard deviations of the low-strain 

stress randomizing factor,  ./, are obtained such that their SRSS combinations with the strain ordinate 

standard deviations,  0
, produce  ����. The resulting randomized stress-strain and damping curves for one 

of the geomechanical units in this case study are shown in Figure 4 for the 30-sample set.  

 

 
 

Figure 2. Schematic of 1D SSI Model 

 
Table 1: Properties of the Base Case Soil Profile Used in the Case Study 

 

Unit 
Thickness 

(ft) 

Unit Weight 

(pcf) 

Vs 

(ft/sec) 

Gmax 

(ksf) 

At-rest 

pressure (Ko) 
+���(ksf)* 

A 8.75 87.6 1,000 2,720 0.46 2.26 to 2.41 

B 40 101.4 1,640 8,470 0.52 1.82 to 3.69 

C 7.5 91.4 1,340 5,097 0.64 3.29 

D 50 88.5 1,050 3,030 0.62 4.63 to 5.94 

E 7.5 97.6 1,550 7,282 0.43 6.61 

F 77 119.1 2,450 22,202 0.42 12.09 to 16.32 

G 53 82.6 1,860 8,875 0.31 12.78 

H 71 80 2,420 14,550 0.33 -+ 

I 62 94.9 2,690 21,326 0.42 -+ 

J 272 83.1 2,910 21,854 0.36 -+ 

K 32.5 94.9 2,580 19,618 0.55 -+ 

Halfspace - 146.8 5,500 137,910 ---- -+ 

*  Shear strength varies with depth. Each geomechanical unit is discretized in the SSI model using one or 

more elements through the thickness.  
+  No strength adjustment is made to the stress-strain curves for these geomechanical units. 
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The site profile in this case study is close to the border between U.S. Geological Survey (USGS) Site 

Classes B and C. Table 3 shows the correlation coefficients calculated using MCS for this soil profile using 

the proposed randomization scheme and values predicted using the Toro (1995) correlation model for 

USGS Class B site. The Toro model was developed using shear wave velocity data from many sites and 

provides ergodic estimates that should be constrained by site-specific knowledge where available. The 

resulting correlation structure shows agreement with the Toro model except at three layer interfaces. Two 

of these interfaces, i.e., the B/C and E/F layer interfaces, represent transition layers, whose Vs values are 

physically constrained to be between the two adjoining layers. The unconstrained Toro model would 

produce simulations with unrealistic Vs values in the transition layers. The third layer interface is between 

Units J and K, which comprise physically distinct materials and are not expected to correlate strongly. The 

Toro model predicts perfect correlation due to the depth of these two layers regardless of their site-specific 

distinction. This comparison confirmed that the randomized soil profile suite distributions are reasonable. 

 

Table 2: Geomechanical Unit Logarithmic Standard Deviations 

 

Unit  ,-  ����  0
  ./  .��� 

A 0.21 0.42 0.25 0.34 0.20 

B 0.22 0.44 0.20 0.39 0.22 

C 0.15 0.31 0.125 0.28 0.22 

D 0.11 0.22 0.15 0.16 0.12 

E 0.21 0.42 0.125 0.40 0.30 

F 0.28 0.56 0.20 0.52 0.30 

G 0.21 0.42 0.15 0.39 - 

H 0.21 0.42 0.15 0.39 - 

I 0.26 0.52 0.15 0.50 - 

J 0.16 0.32 0.25 0.20 - 

K 0.36 0.72 0.25 0.68 - 

 

 

Table 3: Shear Wave Velocity Inter-Layer Correlation Coefficients 

 

Layer Interface 
Recommended 

Sampling Scheme 

Toro (1995) 

Model 

A/B 0.7 0.5 

B/C 1.0 0.6 

C/ D 0.7 0.6 

D/E 0.8 0.7 

E/F 1.0 0.7 

F/G 0.8 0.7 

G/H 0.9 0.8 

H/I 0.9 0.8 

I/J 0.8 0.9 

J/K 0.7 1.0 
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Figure 3. Soil Material Best-Estimate G/Gmax (left) and Damping Curves (right) 

 

Site Response Evaluation 

Two horizontal input ground motion time history records are used in this case study to represent two hazard 

levels: the smaller ground motion amplitudes represent a hypothetical 2,500-year return period (RP) hazard 

level and the larger ground motion amplitudes represent a hypothetical 10,000-year RP hazard level. These 

two hazard levels are selected to evaluate the effects of the randomization scheme presented in this study 

on the soil responses in both the linear and nonlinear response ranges. The 10,000-year return period motion 

is postulated to be 2.4 times the ground motion record corresponding to the 2,500-year return period. These 

input ground motions are applied to the base of the soil columns in the randomized SSI models. 

 

The amplified response spectra (ARS) at the base of the SDOF spring are shown in Figure 5 and 

Figure 6 for 2,500-year RP and 10,000 RP hazard levels, respectively. The same figures also show the 

corresponding outcropped input response spectra. As can be seen, the ARS for the 30-sample and 60-sample 

sets are nearly identical for both ground motion levels. This indicates that the LHS sampling with 30 

idealizations of the soil profile achieves reasonable response statistical stability. The ARS at other soil 

elevations show a similar conclusion. Since this result may be specific to this case study, a sensitivity study 

is recommended to determine the adequate number of idealizations on a case-by-case basis until sufficient 

case studies are available to support general recommendations. 

 

   
 

Figure 4. Randomized Stress-Strain (left) and Damping (right) Curves for Unit F 
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2,500-year RP Input, 30 simulations  2,500-year RP Input, 60 simulations 

 

Figure 5. Comparisons of the ARS at Structure Foundation Elevation for 2,500-year RP hazard level 

  
10,000-year RP Input, 30 simulations  10,000-year RP Input, 60 simulations 

 

Figure 6. Comparisons of the ARS at Structure Foundation Elevation for 10,000-year RP hazard level 

 

SUMMARY AND CONCLUSION 

This article presents an efficient procedure for direct randomization of the soil stress-strain and damping 

curves, which are typically the input required for soil materials of nonlinear SSI systems in commercially 

available FE analysis software. This randomization scheme can be implemented to support probabilistic 

seismic response analyses using either the LHS or the MCS sampling methods. This randomization scheme 

is implemented in four main steps using three factors that control the randomized backbone curves: the 

shear strain ordinate factor, the low-strain shear stress ordinate factor, and the stress factor at shear strength. 

Determination of logarithmic standard deviations for each factor from available soil data is discussed. The 

recommended sampling correlations between these parameters for each soil material within the soil profile, 

and between different soil materials within the profile are described.  

 

A case study is presented using a 1D soil column to demonstrate the process. The soil domain in this 

case study is modeled with 11 unique geomechanical units. The stress-strain and damping curves are 

randomized following the proposed technique using two LHS samples of different sizes. The resulting soil 

profile suites and the statistical stability of SSI simulation results are investigated. The randomized soil 

profiles show reasonable agreement in the correlation structure between the different geomechanical units 
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within the profile with the Toro model. The distributions of simulated amplified response spectra are shown 

to be statistically stable in both the linear and nonlinear response domains when comparing results using 

30 LHS samples to those using 60 samples. This conclusion may be case-specific and it is recommended 

to perform a sensitivity study for individual applications until general recommendations are developed.  
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