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ABSTRACT 

 

Frequency-dependent coupling forces are common in many systems of practical interest, in particular when 

dealing with flow/structure interactions. The importance of fluidelastic forces in flow-excited vibrations 

cannot be over-emphasized, in view of their damaging potential. Typically, fluidelastic coupling 

coefficients are experimentally obtained from vibration experiments, within a limited experimental 

frequency range. When performing nonlinear time-domain computations, conversion of limited fluidelastic 

data from the frequency-domain to the time-domain is mandatory, and non-causality will be artificially 

introduced in the frequency-dependent test data, if one simply assumes that it is nil outside the measured 

frequency range. Here, a new method is developed for causal frequency interpolation/extrapolation of 

experimental fluidelastic data. The proposed technique is nonlinear and iterates alternatively between the 

frequency and time-domains, while enforcing the experimentally available data, as well as causality and 

regularity conditions, at each iteration. The method is tested and illustrated using as reference data simulated 

fluidelastic coefficients based on the Granger-Païdoussis model, in the context of heat-exchanger tube 

bundle vibrations, although the problem addressed embraces a much wider range of applications. The 

frequency-extended data obtained fulfils the Kramers-Kronig relations and, although unable to recover the 

dynamical features of the flow-coupling forces which are totally absent from the measured frequency range, 

the approach has the significant advantage of being model independent and leads to extended data that is 

regular and physically consistent.  

 

INTRODUCTION 

 

Frequency-dependent coupling forces are common in many systems of practical interest involving 

interactions between structures and flows or unbounded media, including flow-induced vibrations (FIV) of 

industrial components (Blevins, 2001), hydroelasticity (Cummins, 1962) and aeroelasticity (Roger, 1977), 

but also in vibro-acoustics (Axisa and Antunes, 2007) and soil-structure interaction (Wolf and Hall, 1988). 

When dealing with flow-induced vibrations, the importance of fluidelastic forces can hardly be over-

emphasized, in view of their damaging potential. Hence the need for advanced models of fluidelastic 

coupling, as well as for experimental coupling coefficients, to feed and validate such models. In this work, 

the problem of fluid-elastic data reduction is revisited in the context of heat-exchanger tube bundle 

vibrations, although the problem addressed concerns a much wider range of applications. 

Typically, as illustrated in Figure 1(a), fluidelastic coupling coefficients are experimentally 

obtained from vibration experiments performed at various flow velocities and vibration frequencies, see 

Sawadogo and Mureithi (2014a, 2014b) and Piteau et al. (2018, 2019). Such data are strongly frequency-

dependent and, whatever the identification method used, typically confined to a limited experimental 
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frequency range. This fact becomes problematic when performing nonlinear dynamical analysis of flow-

coupled structures, as a conversion of fluidelastic data from the frequency-domain to the time-domain is 

then mandatory (Piteau et al., 2018). For properly performing such conversion, an extensive frequency 

range of the flow-coupling coefficients is needed. Otherwise, as will be shown in the following, non-

causality will be artificially introduced in the frequency-dependent test data, when computing the inverse 

FFT of the frequency-dependent test data, for instance if one simply assumes that it is nil outside the 

measured frequency range. There are several possible strategies to interpolate and extrapolate the 

fluidelastic data outside the measured frequency range, without violating physics, in particular: (a) Fitting 

the identified data to a realistic fluidelastic model and then applying time-conversion to the fitted model, as 

done by Piteau et al. (2018); (b) Implementing interpolation/extrapolation techniques which enforce 

causality of the frequency-extended data, as well as other possible a priory constraints, a technique 

suggested by Antunes et al. (2019).  

  
                                                   (a)                                                      (b) 

Figure 1: (a) Conceptual illustration of the identification of fluid-elastic forces; (b) Fitting of experimental 

fluid-elastic coefficients to the Granger-Païdoussis (1996) model, from Piteau et al. (2018). 

As illustrated in Figure 1(b), we have been consistently using the first approach, see Piteau et al. (2018, 

2019), by adjusting the experimentally identified flow coefficients (plotted in red) to the Granger-

Païdoussis (1996) fluidelastic model (plotted in blue), which is causal by construction. Following our recent 

work (Antunes et al., 2019), the later approach is further explored in the present paper, where data 

extrapolation will be addressed without using features connected with any specific theoretical fluid-elastic 

model, and imposing only a minimum of general physical principles. More specifically, a method is 

developed for the causal frequency interpolation/extrapolation of experimental fluidelastic or any other 

frequency-dependent data. The proposed technique is nonlinear and iterates alternatively between the 

frequency and time-domains, while enforcing causality and other possible a priori established constraints 

at each iteration. Such approach was inspired by constrained iterative image restoring techniques based on 

projection onto convex sets (POCS), see Mamonne (1992), although the essential constraint imposed in the 

present context - causality - is quite distinct from those used for image restoring. 

The proposed method is tested and illustrated using simulated fluidelastic coefficients, extracted 

from the theoretical model developed by Granger and Païdoussis (1996), which is assumed here to supply 

the reference "experimental data". Actually, at this stage and for validation purposes of the frequency 

interpolation/extrapolation technique, such approach is more convenient than using actual experimental 

data, because it give us access to a credible "reality" within an extremely wide frequency range. This 

illustrative example lays in the context of heat-exchanger tube vibrations, although the problem addressed 

embraces a much wider range of applications. The frequency-extended data thus obtained also fulfills the 

Kramers-Kronig relations, see King (2009), which test causality in the frequency domain, while preserving 

the measured data in the experimental frequency range. As might be expected, the proposed 

interpolation/extrapolation method cannot recover dynamical features of the flow-coupling forces which 

are barely reflected on the measured frequency range. Nevertheless, it has the significant advantage of being 
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model independent and leads to extended data that is regular and physically consistent, therefore usable for 

the time-domain computations. 

 

FLUID-ELASTIC COUPLING FORCES 

 

Given the basic system shown in Figure 1(a), acted by the external force ( )extF t , dynamics may be 

expressed in the frequency domain as: 

  2

1 1 1 1( ) ( ) ( )ext fm i c k X F F          (1) 

where the flow-coupling force ( )fF   is conventionally expressed by: 

 
2

1 with( ) ( ) ( ) ( ) ( ) ( ) ( )f f f f f fF Z X Z m i c k              (2) 

where ( )fZ   is a (generalized) "impedance", representative of the flow-coupling. Then, the time-domain 

fluidelastic force is obtained through the convolution: 

  1 1

0

( ) ( ) ( ) ( )f f f

t

F t z X t z X t d       (3) 

with the fluidelastic impulse function ( )fz t  given by the inverse Fourier transform of ( )fZ  : 

 
1 1

2
( ) ( ) ( ) i t

f f fz t Z Z e d


  







    F  (4) 

The integral in expression (4) shows that, for an adequate time-domain representation of the 

fluidelastic impulse function ( )fz t , the impedance ( )fZ   must be known over an extended frequency 

range, otherwise, unacceptable artefacts will arise. In particular, non-causality will be introduced if one 

simply assumes that ( )fZ   is nil outside the measured frequency range. 

 

PROPOSED INTERPOLATION/EXTRAPOLATION TECHNIQUE 

 

Causality 
 

Causality of the fluidelastic forces is an essential physical constraint, which universally applies, whatever 

the actual form of any specific flow force. Then. it is tempting to use such feature when developing a 

tentative "reconstruction" scheme for  ( )fZ  , outside the measured range 
min max

[ ]  . Such a method will 

be developed in the following sections. Causality means that the system response cannot precede the 

excitation. It can be defined in two basic manners, according to the physical domain of interest. In the time 

domain, causality is simply stated as: 

 ( ) 0 for 0fz t t   (5) 

while in the frequency domain, causality of linear systems is expressed in terms of the so-called Cramers-

Kronig relations, see Kramers (1927) and Kronig (1926), which relate the real and imaginary parts of 

( ) ( ) ( )f R IZ Z i Z    : 
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where  ( )X H  stands for the Hilbert transform of ( )X  , with P  denoting the Cauchy principal value 

of the improper integrals (which display a singularity at   ) and, for their convergence, it is assumed 

that ( ) 0fZ    . From (6) stems that the causality of linear systems imposes precise relations 

between the conservative and dissipative terms of ( )fZ  , which is a very interesting (and even surprising) 

feature, as the physical mechanisms related to them are typically quite distinct. 

 

Basic reconstruction algorithm 
 

Several numerical schemes may be developed based on the causality relations (5) and/or (6). In the present 

work we propose a nonlinear method for the causal frequency interpolation/extrapolation of experimental 

fluidelastic data, which iterates alternatively between the frequency and time-domains, while enforcing 

causality and other possible a priori established constraints at each iteration. Our approach may be rooted 

to the seminal work by Gerchberg (1974) and Papoulis (1975), which led to the POCS-type constrained 

iterative image restoring techniques, see Mammone (1992), mentioned in the introduction. 

 

 
 

Figure 2. Proposed iterative interpolation/extrapolation of the fluidelastic data. 

The basic reconstruction scheme developed here is shown in Figure 2, for a generic causal function 

( )fZ  , with the corresponding time-domain representation 
1( ) ( )f fz t Z     F . In summary:  

(a) An initial impedance function 
(0) ( )fZ   is built from the frequency-bounded experimental data 

( )mes

fZ  , by zeroing the unknown data in the unmeasured frequency range; 

(b) An iterative scheme is built, by alternating estimations in the frequency domain 
( ) ( )i

fZ   and 

in the time domain 
( ) ( )i

fz t , using the direct and inverse Fourier transforms; 

(c) A nonlinear function reconstruction is obtained at each iteration, by imposing the measured data 

on 
( ) ( )i

fZ   within the identified frequency range, while imposing causality in the time domain by zeroing 

( ) ( )i

fz t  for 0t  . 

In general, for M  constraining POCS linear or nonlinear constraints, the feature projections (c) - 

here denoted ( )m mP P   , with 1,2, ,m M - may be fully enforced through the following 

recursions, see Opial (1967), Gubin et al. (1967), Youla and Webb (1982) and Sezan and Stark (1982): 
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( 1) ( )

1 2 1( ) ( )i i

f M M fz t P P P P z t

  (7) 

As can be formally demonstrated (Youla and Webb, 1982), POCS-type algorithms converge to a 

unique solution, whatever the initial conditions of the nonlinear iterative scheme. Moreover, it will also be 

shown that the proposed reconstruction method is quite robust to noise and/or errors in the measured data. 

These are two important and useful properties of the proposed data interpolation/extrapolation method. 

 

APPLICATION TO THE GRANGER-PAÏDOUSSIS FLUIDELASTIC MODEL 
 

Before the present application to fluidelastic forces, as a preliminary step, we asserted the behavior of the 

proposed interpolation/extrapolation approach on a basic system, consisting of a single degree of freedom 

main structure with a coupled oscillator, providing an additional "pseudo-flow" degree of freedom. 

Interpolations/extrapolations were achieved, ranging from moderately to extremely successful, depending 

on the frequency range of the "measured" data used. These preliminary explorations also confirmed that 

the proposed data reconstruction technique is robust to noise and immune to the initialization conditions of 

the iterative scheme.  

 
Figure 3: Flexible tube in a rigid normal triangular bundle, subjected to cross-flow and vibrating along the 

lift direction, adapted from Mahon and Meskell (2009). 

Turning now to fluidelastic forces, the theoretical "quasi-unsteady" fluidelastic model of Granger 

and Païdoussis (1996) will be used here, for its convenience and physical insight. We considering a single 

flexible tube within a rigid bundle, which is subjected to cross-flow and vibrates along the lift direction, as 

shown in Figure 3. The tubes have diameter D  and immersed length L , the bundle pitch ratio is /P D , 

the fluid has density 
f  and pitch velocity 

fV . The tube lift vibration is denoted ( )Y t . In the time domain, 

the Granger-Païdoussis (1996) model leads to the fluidelastic lift force: 

 
21 ( ) ( )

( ) ( )
2

L
f f f D

f

C Y t Y t
F t V LD g t C

y D V


   
    

    

 (8) 

which does not include the fluid inertia term, as the added mass is assumed to be flow-independent and 

encapsulated with the structural mass. In formulation (8) the dimensionless time /ft tV D  and space 

/y y D  are used, as well as the steady drag and lift flow force coefficients DC  and LC . Finally, a 

motion-to-force delay term is incorporated through a convolution of the tube displacement with the 

following flow relaxation ("memory") function: 

 
1

( )
( ) with ( ) 1 ( )p

P

p

p

td t
g t t t

dt
e








 
    

 
 

 H  (9) 

where 
p  and 

p  (with 1,2, ,p P ) are experimental parameters of the exponential relaxation 

describing flow convection-diffusion adjustment processes. From (9) we obtain: 
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1 1

( ) ( ) 1 ( )p p

P P

p p p

p p

t t
g t t te e

 
   

 

 

   
     
   
   
 H  (10) 

and the corresponding frequency domain function is: 

  
1 1 1

( ) ( ) 1 1
P P P

p p p

p

p pp p p

G g t i
i i

  
  

     

 
      

   
  F  (11) 

From (8) and (11), one obtains the dimensionless flow-coupling impedance, see Piteau et al. (2018): 

 
  2

1

( )
( ) 1

1 2

P
f pL

f D

pf f p

Z C
Z i i C

V L x i

 
  

  

 
       

  (12) 

and the corresponding dimensionless impulse function: 

 
  2

( )
( ) ( ) ( )

1 2

f L
f D

f f

z t C
z t g t C t

V L x





  


 (13) 

with ( )g t  given by (10). The dimensionless coefficients /LC x   and DC  in (12) and (13) can be inferred 

from the data by Granger and Païdoussis (1996), based on experiments by Price and Païdoussis (1986). For 

a normal triangular array:  

 
2 2

with
/ 1

19.2 ; 3.8
/

L
D

f

C V P D
c C c c

x V P D

 
    


 (14) 

The parameters used in the following are those found by Meskell (2009) using a single-term in the 

series model (12), with 1 1  , 1 0.157   and the coefficients / 2.13LC x     and 0.422DC   

computed from (14), for a normal triangular array with / 1.375P D   (note that the values 

/ 10.15LC x     and 2.01DC   given by Meskell (2009) are erroneous, because of a wrong correction 

factor / fc V V  used there). In addition, in his analysis of the relaxation function ( )g t , Meskell (2009) 

argues that physics prevent an impulse at 0t   for flow-excited tubes: "It should be noted that at time 

0   the tube has not experienced any displacement, thus the lift and the circulation, and hence the 

memory function, should be zero". Then, the constraint 
1

1
P

pp



  is extracted from equation (10), when 

zeroing the impulse term at 0t  . The fluidelastic impedance (12) then reads: 

 
  2

1 1

with
( )

( ) 1
1 2

P P
f p pL

f D p

p pf f p

Z C
Z i C

V L x i

  
  

   


   

 
   (15) 

Looking at equation (15), one notices that ( )fZ   displays terms of profoundly different nature:  

(a) All P  terms of the series tend to 
p  when 0   and to zero when  , in accordance 

with the classic structure of these terms, all of them being strictly proper. The impulse response component 

stemming from these terms is well behaved, of decreasing exponential nature, see equation (10). 

(b) On the contrary, the last term Di C  is obviously improper. Because energy will increase 

unbounded with frequency, this derivative operator will lead to a problematic singularity at 0t  , see 

equation (13). 

The P  terms (a) dominate ( )fZ   at lower frequencies, while the derivative term (b) controls the 

behavior of ( )fZ   at higher frequencies. In order to bypass the difficulty connected with the improper 

nature of (15), we address the problem by separating ( )fZ   into two parts, the first strictly proper and the 
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second improper. Actually, following the theoretical rationale presented by Antunes et al. (2022), for any 

given flow velocity the fluidelastic forces can in general be expressed as: 

 
2

1

( )
P

p

f

p p

R
Z M i C K

i
  

 

   


  (16) 

where the basic series has P  strictly proper terms and, additionally, one considers up to three "pure" (not 

frequency-dependent) improper terms, respectively of inertia, dissipation and stiffness nature. Because the 

reference added mass term is typically associated to the structural mass, we drop it from (16), hence: 

1

Re ( ) Re ( )
( ) ( )

Im ( ) Im ( )

P
f fp

f f

p p f f

Z W KR
Z i C K W i C K

i Z W C

 
   

    

         
       

         

  (17) 

Therefore, given some bandlimited fluidelastic data ( )fZ  , if we can isolate the improper terms 

pertaining to the coefficients C  and K , we are then left with a strictly proper and well behaved function 

( )fW  , which can be causally extrapolated using the iterative projection technique developed. The 

simultaneous identification of C , K  and ( )fW   from ( )fZ   is not an obvious task. Here we adopted 

the following strategy: 

1) Define plausible exploration ranges for 
( )

min max

jC C C   and 
( )

min max

jK K K  ; 

2) For each tentative values of 
( )jC  and 

( )jK , compute 
( ) ( )j

fW   from ( )fZ   using (17); 

3) Interpolate/extrapolate the experimental data of 
( ) ( )j

fW   using the proposed technique; 

4) Compute the impulse response 
( ) ( )j

fw t  from the extrapolated 
( ) ( )j

fW   estimation; 

5) Define a "pulse-index" value 
( )( ) (0)j

fP j w  of the 
( ) ( )j

fw t  estimation; 

6) Because the true ( )fW   is strictly proper, then the true ( )fw t  is not impulsive, which implies 

the optimality condition for identifying the "true" C , K  and ( )fW  : 

  
( )( )

( )( )
uch that min

( ) ( )
   s    ( ) ( )

( ) ( )

optopt

optopt

jj

f f

opt optjj

f f

W WC C
j P j P j

w t w tK K

   
   

  

 (18) 

This scheme can be implemented using either a systematic exploration of 
( )

min max

jC C C   and 

( )

min max

jK K K  , or else using an optimization algorithm for faster convergence. Here, we 

pragmatically postulate that 0K   (which is true for the Granger-Païdoussis model, although not in 

general) and systematically explore C  in the range 
( )0 5j

DC C  , see equations (15) and (17), for the 

single-term Meskell (2009) approximation polluted with 10% errors (e.g., 10% of the ( )fZ   rms value in 

the measured frequency range). 

We now assume that the data ( )fZ   was "measured" in the lower frequency range 0 1  . 

Figure 4 shows the reference (green) and the band-limited "measured" (red) data, at the start of the iterative 

procedure, when zero values are enforced in the non-measured frequency range. The corresponding proper 

function 
( )

( ) ( ) optj

f fW Z i C    , obtained after the optimally identified estimation of C  is shown in 

Figure 5. One can notice that ( ) 0fW    as  , a compulsory property of strictly proper functions. 

The last plot of Figure 5 presents the initial estimate of the corresponding impulse function ( )fw t , 

showing that at this stage the model is not causal. 
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Figure 4: Fluidelastic impedance ( )fZ   from the Granger-Païdoussis model, for a normal triangular 

array with / 1.375P D  , using parameters 
1

1  ,  
1

0.157  , / 2.13
L

C x     and 0.422
D

C  , with 

experimental data provided in the frequency range 0 1   with 10% error: Initial approximation with 

zeroed unmeasured frequency range. 

 

 

Figure 5: Derived proper functions ( )fW   and ( )fw t , from the Granger-Païdoussis model, for a 

normal triangular array with / 1.375P D  , using parameters 
1

1  ,  
1

0.157  , / 2.13
L

C x     and 

0.422
D

C  , with experimental data provided in the frequency range 0 1   with 10% error: Initial 

approximation with zeroed unmeasured frequency range. 
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Figure 6: Fluidelastic impedance ( )fZ   from the Granger-Païdoussis model, for a normal triangular 

array with / 1.375P D  , using parameters 
1

1  ,  
1

0.157  , / 2.13
L

C x     and 0.422
D

C  , with 

experimental data provided in the frequency range 0 1   with 10% error: Final data extrapolation after 

10000 iterations. 

 

 

Figure 7: Derived proper functions ( )fW   and ( )fw t , from the Granger-Païdoussis model, for a 

normal triangular array with / 1.375P D  , using parameters 
1

1  ,  
1

0.157  , / 2.13
L

C x     and 

0.422
D

C  , with experimental data provided in the frequency range 0 1   with 10% error: Final data 

extrapolation after 10000 iterations. 



 

26th International Conference on Structural Mechanics in Reactor Technology 

Berlin/Potsdam, Germany, July 10-15, 2022 

Division III 

 

Figure 8: Computation of the "pulse index" ( )P j  of 
( ) ( )j

fw t , as a function of 
( )jC . 

Figure 6 shows the extrapolated fluidelastic impedance 
( )

( ) ( ) optj

f fZ W i C    , obtained 

from the extrapolated causal function ( )fW   shown in Figure 7, which also presents the corresponding 

impulse function ( )fw t , these results being now clearly causal. All these extrapolated estimations closely 

follow the reference results of the Granger-Païdoussis model, in a satisfying manner. 

Finally, Figure 8 presents the "pulse-index" function ( )P j  as a function of 
( ) /jC C , confirming 

that - as was logically assumed - ( )P j  displays a minimum for the true value 
( )

/ 1optj
C C  . Therefore, 

the proposed identification scheme indeed leads to a correct estimation of the improper term coefficient C . 

 

CONCLUSION 
 

In this work, we proposed a new approach for the frequency interpolation and extrapolation of experimental 

fluidelastic data. The technique iterates between the frequency and the time-domain, where the measured 

data and the physical causality (and, eventually, other a priori known features) are respectively enforced. 

Additionally, an optimization scheme was also developed in order to separate the fluidelastic data into its 

strictly proper and improper components. Then, the iterative interpolation/extrapolation method is applied 

to the well-behaved proper part, which is later added to the impulsive improper part. 

The proposed technique was applied to simulated fluidelastic data, stemming from the Granger-

Païdoussis model. Overall, the obtained results are quite encouraging, and suggest that the proposed 

approach is usable for actual experimental data. However, not surprisingly, the effectiveness of the obtained 

interpolated/extrapolated estimations is heavily dependent on the physical relevance of experimental data 

processed. Typically, experimental data pertaining to dynamically relevant frequency ranges lead to 

excellent interpolation/extrapolation reconstructions, while the use of experimental data from less relevant 

frequency ranges can miss significant dynamical features. The proposed data-extension approach has room 

for improvements, namely by devising new a priori known features of the coupling impedance to enforce, 

beyond the causality and smoothness properties used here. 
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