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ABSTRACT

Probabilistic risk assessment (PRA) is used as an essential tool for risk-informed decision making in
nuclear industry. The fault and event trees play a crucial role in PRA to estimate the probability of system
failure based on the failure probabilities of components. The fault trees or event tree for an actual power
plant unit can be fairly large in size with several different types of logic gates, interconnected events, and
dependent events, etc. A large fault tree can include hundreds of gates, basic events (BEs), multiple
occurring events (MOEs), and dependent events. Complex connectivities can give rise to excessive
computational demand and storage requirement for the analysis. Fault and event trees can be solved using
the minimal cut-set approaches, or advanced quantification techniques such as Binary decision diagrams or
Bayesian networks. However, these techniques can be computationally inefficient for larger fault trees and
can run out of memory/storage space. This study focuses on developing and proposing a new approach for
accurate estimation of the system-level risk while improving the computational efficiency significantly.
More specifically, an attempt is made to reduce the complexity for the analysis of MOEs and dependent
events in fault trees. The proposed algorithms in this study present a significant improvement over
traditional approaches which makes it highly promising for additional developments.

INTRODUCTION

The nuclear industry has increased its reliance on probabilistic risk assessment (PRA) tools for design,
operation, life extension, and regulation. PRA evaluates the risk associated with a specific hazard by a
convolution of system fragility and hazard curve (Andersen et al., 2013; Bodda et al., 2019, 2020c; IAEA-
Corporate-Author, 2010). A fragility curve of structures, systems, or components (SSCs) is expressed as
the conditional probability of failure for a given hazard intensity and is a function of the uncertainties
in empirical, experimental, and/or numerical data in the physical and mathematical models of the SSCs
(Bodda et al., 2020a,b; Chandrakanth et al., 2019). US Nuclear Regulatory Commission (USNRC) and
International Atomic Energy Agency (IAEA) have issued guidelines for conducting a full scope PRA, where
the plant level risk is calculated by combining the component and the subsystem fragility curves through a
systems analysis (IAEA-Corporate-Author, 2010; US Nuclear Regulatory Commission, 2002). Typically,
fault and event trees are used for conducting the systems analysis by logically combining the component
level fragilities, and for convoluting the fragilities with the hazard curve (Andersen et al., 2013; Kennedy
and Ravindra, 1984).

Fault tree analysis is one of the most powerful tools in PRA to represent the failure probability of a
nuclear plant based on the failure probabilities of its basic components. The events in fault and event trees
are modeled using binary states: failure or not a failure (success) (RA-S, ASME, 2002). An assessment of
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logic trees with n events requires an analysis of 2" scenarios emerging from the various combinations of
event failures. Hence, a complete analysis of a logic tree demands computational complexity of the order 2"
in either time or space. The exponential order of complexity is required mainly to address the dependencies
and dependent failure events.

Bottom-up methods have been used when fault trees do not include multiple occurring events
(MOEs) and dependent events. However, a complex fault tree typically implements solvers such as
minimal cut set analysis (Jung, 2015). The computation of minimal cut sets for fault and event tree is
conducted through a widely used MOCUS algorithm (Smith et al., 2016). The computation of the minimal
cut sets using this algorithm poses an intractable NP-hard problem (Yeh, 2006, 2021). Therefore, the
analysis of large fault trees requires significant computational resources, which makes the analysis of PRA
models inefficient and time consuming. In addition, this approach may suffer from exponential complexity
for computational time as a function of minimal cut sets in a network when exact computations need to be
made. If the network consists of only the OR gates then the time complexity for exact computation would
be O(2"B2), where npp is the number of basic events.

There are several traditional methods that reduce the complexity but at the expense of accuracy
(Vaishanav et al., 2020). In order to reduce the computational demands for the analysis of the fault and
event tree networks, several assumptions or approximations are often relied upon. Binary decision diagram
(BDD) is another established method where a fault tree is converted to BDD structure based on the Boolean
logic expression of the fault tree (Jung, 2015; Reed, 2017). However, the size of BDD structure increases
exponentially with the number of variables. Additionally, the size of BDD structure is very sensitive to the
order of variables (Kumar et al., 2010). Therefore, excessive memory demand is an additional limitation
for solving large fault trees with BDD algorithm. Consequently, approximations are used and even with
approximations, it results in polynomial order of computational complexity (Wegener, 2004). Bayesian
networks have also been used for the analysis of the network diagrams (Bodda et al., 2021). However, it
appears that all formulations present some computational difficulties (Cavalieri et al., 2017), which are due
to either of the following reasons: (i) size of conditional probability tables (Bensi et al., 2013), (ii) the size
of clique potentials in the junction-tree algorithm (Kahle et al., 2008), (iii) the recursive algorithm for the
identification of minimum link sets (Bensi et al., 2013).

This study focuses on developing and proposing a new approach to solving such problems while
improving the computational efficiency significantly. More specifically, an attempt is made to reduce the
complexity for the analysis of dependent events in fault trees. The proposed solution is just a beginning and
several more scenarios will need to be considered and implemented before this approach can be used for
solving true real-world applications. At the same time, it presents a significant improvement over existing
implementations which makes it highly promising for the additional developments.

PROPOSED ALGORITHM

In this study, fault trees are represented using a general Tree data structure. Figure 1 (a) shows a generic
fault tree and Figure 1 (b) shows the corresponding generic Tree data structure. The following terminologies
of Tree data structure are defined to assist with the explanation of the proposed algorithms in the study.

Definitions and Terminology

» Top/Root node: the top node in a tree data structure.

* Child node: a node which is a descendant of any node. A node with no child nodes is called as a Leaf
node.

* Parent node: a node which is a predecessor of any node.
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* Internal node: a node which has at least one child node.

» Edge: alink which connects any two nodes.

* Chain/Path: a sequence of nodes and edges between two nodes.

* Subtree: a part of tree data structure which represents a node and all of its descendants.

» Height of a node: the total number of edges from a particular node to the leaf node in the longest
chain. The height of all leaf nodes is zero.

* Dependent/common node: a node which has more than one parent.
* Independent tree: a tree with no dependent nodes.
* Loop: aloop is formed when the start node and the end node of two chains are same.

* Logic Gate: represents the parent/child relationship. The notation of logic gates are described in
detailed in the following section.

* Nodes are represented by circles and the logic gates are denoted by rectangles. The basic event,
intermediate event, and top event in the fault tree are referred to as leaf node, internal node, and top
node in the Tree data structure.

L]

IEl IE2

|BE1| |BE2| |BE2| |BE3| |BE4|

(a) Fault Tree (b) Tree Data Structure

Figure 1. Generic Fault tree and Tree data structure

Compressed Truth Tables

In a fault tree, all the intermediate events and the top event are connected to the basic events through the use
of logic gates as shown in Figure 1 (a). In a Tree data structure, the logic gates represent the parent/child
relationship, and all the internal nodes have the logic gate attribute. In this study, we examine four logic
gates in detail: AND, OR, NAND, and NOR. Table 1 gives the truth table for input nodes A and B when
they are connected to an internal node with any of the four logic gates. In the truth tables, the failure and
success states of a node are represented using binary states 1 and 0, respectively. The two binary states for
nodes A and B lead to 4 (2?) possible combinations. If suppose n nodes are connected to a logic gate, then
there will be 2™ possible combinations of input node states. As seen in Table 1, the highlighted output state
is different from the output states of the rest of the three combinations in all the truth tables. This observation
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is valid even when n nodes are connected to a logic gate, i.e., output state of only one of the combinations
will be different from rest of the 2" — 1 combinations.

-

(a) Fault Tree (b) Tree Data Structure

Figure 2. Logic Gates

Table 1: Truth Tables for logic gates with two input nodes A and B (The term 0 and 1 in truth table translate
to success and failure in fault and event trees)

AND NOR OR NAND
A B|Ou A B|Ouw A B|Ou A B|Ou
0 0] 0 0 0 1 0 0] 0 0 0] 1
1 0] 0 1 0] 0 10| 1 10| 1
0 1] 0 0 1[0 0 1] 1 0 1] 1
1 1) 1 1 1/ 0 111 1 1,0

Compressed

Output Output Output @ Output @
Input Input @ Input @ Input

Furthermore, the binary states of each logic gate are mutually exclusive and collective exhaustive.
Therefore, if the probability for the shaded output state (Poytputstate) Of a logic gate is calculated, then the
probability for its complement state can be calculated as 1 — Poutputstate- In this study, we compress the
truth table for each logic gate in two states: input state and output state. Table 1 also shows the input state
and output state for each of the logic gate in the Tree data structure. The logic gates in the fault tree are
converted into the input state and output state in the Tree data structure and an illustration of the same can
be seen in Figure 1 (b).

ALGORITHM FOR TREE WITH INDEPENDENT NODES

The binary states probabilities of any internal node in a Tree data structure can be calculated based on its
logic gate and the probability of its child nodes. The output state and input state from the compressed
truth table (Table 1) are used to obtain these probabilities. The probabilities output state, Po,;(IN) and its
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complement state, P, /(IN) for an internal node are calculated using Equation 1.

Pout(IN) = (1) Pinp(Child;) 0
=1

Py, (IN) =1 — Pou(IN)

where, Out and Inp are the output and input states of the logic gate corresponding to the internal
node IN. Out’ is the complement of the output state; i.c., if Out = 1 then Out’ = 0. n is the total number
of child nodes of the internal node I N. Ppy,,(Child;) is the probability of child 7. Since all the nodes in
the Tree data structure are independent, the intersection of their failure or success state probabilities can be
simply obtained by multiplying their respective probabilities as shown in Equation 2.

Pout(IN) = () Pinp(Child;) = | [ Prnp(Child;) 2)
=1 =1

In this study, the failure probability of the top node is obtained using a bottom-up approach. The
approach is illustrated for a simple Tree data structure with independent nodes shown in Figure 3. First,
the height of all the internal nodes are calculated. The height of all the leaf nodes is zero. The height of
an internal node is calculated by counting the number of edges from the internal node to a leaf node along
its longest chain. For example, there are three chains from internal node I N, to leaf nodes: TNy — IN; —
C,INo,— 1INy — D, IN>— B, where, the longest chain is I Ny — I N1 — C. Hence, the height of I N is equal
to 2. Similarly, heights of all the other nodes are calculated and all the internal nodes are sorted in ascending
order based on the height as shown in Figure 3. Next, the output probabilities of the internal nodes are
calculated one by one in the sorted order [I Ny, I Ny, T'N] as shown in Equation 3 using Equation 2..

P()(INl) :PQ(C) Xpo(D), P1(1N1> :1—P0(IN1)
PL(INy) = Py(B) x Py(INy),  Py(INy) =1— Pi(IN,) 3)
P (TN) = Pi(A) x Po(INz2),  P(TN)=1-P(TN)

where, Py denotes the success probability of a node and P} denotes the failure probability of a node.

Height =3

Figure 3. A simple Tree data structure with independent nodes

We propose a generic algorithm to calculate the probabilities of all the independent nodes in a Tree
data structure. The required steps for obtaining the probabilities are described below:
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1. Calculate the height of all internal nodes in the Tree data structure.
2. Sort the internal nodes in ascending order based on their height.

3. Calculate the binary state probabilities of the first internal node in the sorted list based on its logic
gate connection and using Equation 2.

4. Repeat step 3 for all the internal nodes in the sorted list.

5. In the final step, calculate the binary state probabilities of the top node based on its logic gate
connection and Equation 2.

TREE WITH TWO DEPENDENT CHAINS

The algorithm described in the previous section is only valid for a Tree data structure with independent
nodes. When dependent or common nodes are present in a Tree data structure, the intersection probabilities
of node states can no longer be obtained simply by multiplying their respective probabilities as shown in
Equation 2. Therefore, in order to obtain the correct probability of the internal node, the intersection of its
child nodes must be performed using Boolean algebra. In this study, we consider a simple Tree data structure
(see Figure 4) with only one dependent node and a single loop to illustrate the process for calculating the
exact probability of top node T'N. The top node probability is calculated using Equation 4.

Nchains

Pou(TN)= () Prmp(Chain) (4)
i=1

where, Out and Inp are the output and input states of the logic gate associated with the top node
TN and Chain; is the i*" dependent chain connected to the top node.

Figure 4. A simple Tree data structure with one dependent node and single loop

Equation 4 can be simplified and written as a generalized equation which is shown below.

Py(TN) = K, + K2 P(C) [K1 = ki,k1,, Ko = k1, ko, + k1,ko, + ko, ka,] )
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In this study, we propose a simple algorithm to calculate the coefficients k1, and ko, for a given
chain ¢ which can be used to calculate the coefficients /; and K3 for the top node. kg, can be calculated by
multiplying the probabilities of all the leaf nodes that are connected to the internal nodes along the chain ¢
and is given by Equation 6.

k2, = (=17 [ [ Praprn(N;) (6)
j=1

where, n; is the total number of leaf nodes (except the common leaf node C') and other internal
nodes connected to the internal nodes along the chain i. Pry,rn (N j) is the probability of the node N; and
the state of the node (InpIN) is determined based on its connection to the logic gate associated with the
internal node. z is the total number of state changes between a child node output state to its parent node
input state along the chain. Next, the term k1, is evaluated using Equation 7.

kli = Pjnd(Chaini) — kQIP(C) (7)

where, Pr,q(Chain;) is the probability of chain ¢ estimated using the algorithm for the Tree data
structure with independent nodes.

COMPUTATIONAL EFFICIENCY

In this section, the computational efficiency of the proposed algorithm is compared to that of a traditional
approach. To do so, relatively larger sized fault trees are considered and run times are calculated for both
approaches. A set of 10 cases with 117 basic events, 15 intermediate events, and varying logic gate
connections are considered. The fault trees are analyzed with a traditional approach that utilizes MOCUS
and upper bound approach. The true computation run time or CPU time is highly dependent upon the type
of hardware used. Therefore, for a hardware independent comparison, run times are normalized with
respect to the run time for the proposed method on the same hardware. This assists with visualization of
relative difference in the computation times using the two approaches. The normalized run times for each
case in the three sets are compared in Figure 5. As seen in Figure 5, the run times of traditional approach
can be significantly high in some cases depending upon the type and connectivity of different logic gates in
the fault tree. An important aspect that is not directly evident in the figures is that the run time for proposed
approach remains constant for various different cases of a given set. It changes from one set to another. In
other words, unlike the traditional approach, the run time for the proposed approach is not dependent upon
the type of logic gates and their connectivity within a given fault tree. Figure 6 compares the failure
probability of top event for each case as evaluated from the two methods for the illustrating the accuracy of
the proposed approach. It is also important to note that for all cases and each set, the failure probabilities of
top node are identical from the two approaches as shown in Figure 6.
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Figure 5. Comparison of efficiency of the proposed algorithm compared to traditional approach
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Figure 6. Comparison of accuracy of the proposed algorithm compared to traditional approach

SUMMARY AND CONCLUSIONS

Fault and event trees are used for probabilistic risk assessment of nuclear power plant systems. A fault and
even trees analysis for a power plant requires modelling of hundreds of component failures, logic gates,
multiple occurring events, and dependent events. Such interconnection for large networks can lead to
excessive computational demand. Most of the traditional methods address computational demand by using
assumptions or relying on high performance computing facilities that allow implementations of parallel
computing. This study presents a novel module-based approach to address the computational demands of
PRA. The proposed algorithm is developed for fault trees with a dependent node and multiple chains
connecting the dependent node. The logic gates are converted into compressed truth tables to achieve the
desired efficiency. For fault trees with fixed width and height (same number of basic events and
intermediate events), the computational demand of traditional approaches changes based on different
connectivity of events and gates. However, the computational demand of the proposed algorithm remains
constant. In addition, the computational demand of proposed algorithm can be less than that of traditional
approach by an order of magnitude for some cases.
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In summary, the proposed approach is computationally efficient and has same accuracy as traditional
approaches. However, it is different from traditional approaches in the sense that it does not calculate
minimal cut sets. While the proposed algorithm is a significant improvement of the currently available
techniques, it has not been applied to and explored for many different scenarios that exist in a real PRA
network. The proposed algorithm needs to be enhanced for a few such scenarios such as consideration of
Common Cause Failures (CCF) and n/m gates (Smith et al., 2011). Such improvements are recommended
for future studies.
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