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Introduction 

Probabilistic fracture mechanics (PFM) for piping applications addresses questions such as 

the likelihood that a crack in a pipe will be present, whether it is detected during a given 

inspection, and if it grows to a critical size before the next inspection, causing a leak or a 

break.  Therefore, PFM is a key analytical tool for understanding and modeling leak-before-

break (LBB) behavior.  A variety of PFM codes have been developed in the Organisation for 

Economic Co-operation and Development (OECD) member states during the last four 

decades to support the continued safe operation of ageing components.  However, these codes 

have been designed using different models and assumptions because there are no 

internationally accepted PFM guidance and acceptance criteria, and it is not trivial to 

understand the effect of these differences.  Additionally, comparisons and reconciliations 

between probabilistic and deterministic LBB approaches are scarce.  

To address these challenges, the metals sub-group of the Working Group of Integrity and 

Ageing of Structures (WGIAGE) of the Committee on the Safety of Nuclear Installations 

(CSNI) of the Nuclear Energy Agency (OECD/NEA) has launched an activity to benchmark 
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PFM approaches for piping applications.  The PFM benchmark is intended to address the 

following five objectives: 

1) Understand differences in PFM software design to prepare more effective benchmark 

cases 

2) Benchmark deterministic fracture mechanics (DFM) models 

3) Evaluate the effectiveness of leak detection in reducing piping component failure 

probabilities 

4) Reconcile deterministic and probabilistic LBB approaches 

5) Evaluate the importance of several risk-significant parameters in affecting piping failure 

probabilities (e.g., in-service inspection and weld residual stresses (WRS))  

The present paper summarizes participants’ responses to a questionnaire on PFM code design 

to fulfill the first objective of the project.  An analysis of the participants’ responses is presented 

to include the following: (1) a compilation of short- and long-term acceptance criteria for PFM 

applications; and (2) a comprehensive list of references for the various fracture mechanics 

models related to the simulation of a circumferential crack and primary stress corrosion 

cracking (PWSCC), including WRS, stress intensity factor (SIF) solutions, J-integral solutions, 

net-section collapse stability, crack opening displacement (COD), leak rate, and crack growth.  

Questionnaire Design 

Appendix B shows the questionnaire issued to the participants.  To guide the participants in 

preparing their responses, the questionnaire included sample answers.  Also, the content of the 

questionnaire was carefully designed to ensure that all participants could complete it in about 2 

hours.  

Participants and Computer Codes 

Participants from 15 organizations and 12 different countries contributed to this benchmarking 

activity.  The 14 computer codes are summarized in Table 1.  Multiple participants have access 

to two PFM codes.  To avoid duplication in the comparison of codes which were accessible to 

multiple organizations, PROMETHEUS is associated with Emc2, and PROLOCA is associated 

with KINS.  Because GRS and PSI use different analysis options of the same code (PROST), 

both organizations were presented in the comparison tables below.   

Table 1: List of Participants and PFM Codes 

Organization Code Version Organization Code Version 

CRIEPI, Japan PEDESTRIAN 1.1 KIWA, Sweden NURBIT 6 

Emc2, USA PROMETHEUS 2.0 LEI, Lithuania SACC  

Emc2, USA PROLOCA 7.02 MPA, Germany Xpipe 3.3-R0a-p1 

KINS, South Korea PROLOCA 7.02 NRG, Netherlands DeMoT 2.1 

PSI, Switzerland PROLOCA 7.02 SIA, USA Beyond-PRAISE 2.1 

PSI, Switzerland PROST 4.7.3 SNC, Canada PRAISE-CANDU 2.1 

GRS, Germany PROST 4.7.3 Beta USNRC, USA xLPR 2.2 Beta 

IPP-Centre, Ukraine SIF-Master 2.0 VTT VTTBESIM 0.8 

JAEA, Japan PASCAL-SP 2    

The adopted coding languages, quality assurance (QA) standards, and parallel processing 

capabilities are summarized in Table 2.  The primary coding languages include C++, C#, Java, 
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Fortran, Matlab, and visual basic (VB).  Most codes were developed and are maintained under 

nationally or internationally recognized QA standards and requirements, such as Title 10 of the 

Code of Federal Regulations, Part 50, Appendix B [1], ASME NQA-1-2008 [2], CSA 

N286.7-16 [3], IAEA SSG-2 [4], and ISO/IEC/IEEE 90003 [5].  

Table 2: Coding Language, QA Standard, and Parallel Processing  

 LEI KIWA EMC2 CRIEPI VTT KINS JAEA IPP MPA NRG PSI GRS USNRC SNC SIA 

Coding 

Language 

Fortran 

VB 

Fortran 

C# 
Fortran Fortran Matlab Fortran C++ C++ 

C++ 

VB 
Matlab Java Java 

Fortran 

C# 
C# C# 

QA Standard No Yes No No Yes No Yes Yes Yes Yes Yes Yes Yes Yes Yes 

Parallel 
Processing 

No No No No No No No No No No No No Yes No No 

Summary of PFM Code Capabilities 

Table 3 presents some of the PFM codes’ core modeling capabilities.  The items identified as 

the focus areas for the benchmark problems are highlighted and include circumferential 

cracks, PWSCC, leak detection, inspection with tabular probability of detection (POD), and 

WRS uncertainty.  These items were selected to accommodate the most participants and to 

reflect current issues of interest in the nuclear power industry.  The shaded cells indicate that 

the response was either not received or was not applicable.  It is worth noting that there are 

considerable differences among the codes in the treatment of crack face pressure (CFP) in the 

calculation of SIFs for both part-through-wall (PTW) and through-wall (TW) cracks and in 

the calculation of the COD.  Their effects on the LBB quantities of interest (QoIs), such as the 

margin between leak and break and the probability of failure, should be considered case-by-

case.  

Table 3: Comparison of PFM Code Core Modeling Capabilities 

 

Design of Benchmark Problems 

The benchmark study includes deterministic [6] and probabilistic benchmark problems.  A 

pre-existing circumferential crack is postulated in a fictitious butt-weld fabricated from 

Alloy 182 in a pressurized-water reactor coolant system.  The degradation mechanism is 

PWSCC.  The crack in the weld grows from the prescribed normal operating loads (i.e., 

pressure, deadweight, and thermal expansion) and WRS.  A total operating life of 60 years is 

assumed. 

`

Participant 

Coverage
LEI KIWA Emc2 CRIEPI VTT KINS JAEA IPP MPA NRG PSI GRS USNRC SNCL SIA

Axial Crack 67% √ √ √ √ √ √ √ √ √ √

Circ. Crack 100% √ √ √ √ √ √ √ √ √ √ √ √ √ √ √

Low Cycle Fatigue 93% √ √ √ √ √ √ √ √ √ √ √ √ √ √

IGSCC 93% √ √ √ √ √ √ √ √ √ √ √ √ √ √

PWSCC 100% √ √ √ √ √ √ √ √ √ √ √ √ √ √ √

Non-idealized through-

wall crack
67% √ √ √ √ √ √ √ √ √ √

Leakage Detection 100% √ √ √ √ √ √ √ √ √ √ √ √ √ √ √

Mid-life Mitigation 53% √ √ √ √ √ √ √ √

Parallel Computing 13% √ √

Transition Depth 100% 90%tw 90%tw 95%tw 95%tw 95%tw 95%tw 95%tw 95%tw 80%tw 95%tw 95%tw 95%tw 95%tw 95%tw 95%tw

Fatigue Initiation 73% √ √ √ √ √ √ √ √ √ √ √

SCC Initiation 87% √ √ √ √ √ √ √ √ √ √ √ √ √

Spatial Discretization 60% √ √ √ √ √ √ √ √ √

Inspection-Tabular POD 100% √ √ √ √ √ √ √ √ √ √ √ √ √ √ √

CFP on SIF  for PTW Crack 100% 0% 100% 100% 100% 100% 100% 100% 100% 100% 0% 0% 0% 100% 100% 100%

CFP on SIF  for TW Crack 100% 0% 0% 100% 100% 100% 100% 100% 100% 100% 0% 0% 0% 100% 100% 100%

CFP on COD 87% 0% 50% 50% 50% 0% 100% 100% 0% 0% 0% 50% 50% 50%

WRS Uncertainty 87% √ √ √ √ √ √ √ √ √ √ √ √ √

Compliance with QA 

Standard
67% √ √ √ √ √ √ √ √ √ √
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Since the objective of the benchmark problems is designed to provide a meaningful 

quantitative comparison among the various codes involved in the benchmark study, the crack 

initiation and subsequent crack coalescence are ignored to ensure broad participation in the 

benchmark activities. Most of the PFM codes cannot model the coalescence of multiple 

cracks.  

WRS Models 

WRS is a key driving force for the initiation and growth of PWSCC in Alloy 82/182 

dissimilar metal welds.  For circumferential cracks, the through-thickness axial WRS profile 

is required.  In a PFM code, the axial WRS is typically defined in one of the following 

approaches: tabular form, polynomial equations, and linear axisymmetric.  These different 

modeling approaches could have a pronounced effect when a complex WRS profile, such as a 

3rd order polynomial, is considered.  In addition, finite element analysis and lab measurements 

have shown a large scatter in the WRS profile.  The capability to consider WRS uncertainties 

is essential in the PFM benchmark.  

Table 4 summarizes the responses received from all participants on their WRS models.  The 

response from Emc2 is for the PROMETHEUS code, the responses from PSI and GRS are for 

the PROST code, and the response from KINS is for the PROLOCA code.  

Table 4: Definition of Axial WRS Profile for Circumferential Crack  

Definition of 

WRS Profile 
LEI KIWA EMC2 CRIEPI VTT KINS JAEA IPP MPA NRG PSI GRS USNRC SNC SIA 

Tabular form Yes Yes Yes No Yes Yes Yes Yes Yes No Yes Yes Yes Yes Yes 

Polynomial No No No Yes Yes Yes Yes Yes Yes Yes Yes Yes No Yes Yes 

Linear No No No No No No No Yes Yes Yes No No No Yes Yes 

Uncertainty 

Treatment 
No No Yes No Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

SIF Solutions 

To evaluate a time-dependent problem, the accuracy of the calculated SIFs along the crack 

profile has a fundamental impact on the calculated time to leakage or time to rupture.  The 

SIF solution models [7]-[27] are summarized in Table 5.  Comparisons of these solutions are 

beyond the scope of the present paper.  References [28] and [29] present some recent 

comparisons of various SIF solutions.  

Table 5: SIF Solutions 

Crack Type LEI KIWA EMC2 CRIEPI VTT KINS JAEA IPP MPA NRG PSI GRS USNRC SNC SIA 

PTW Crack [7] [8] [10] [12] [17] [10] 
[13] 

[14] 

[17] 

[18] 

[19] 

[20] 

[8] [9] [23] 

[23] 

[24] 

[25] 

[26] 

[10] [17] [17] 

TW Crack [7] [8][9] [11] N/A [17] [11] 
[15] 

[16] 

[17] 

[21] 
[8] [22] [11] 

[11] 

[21] 
[11] [27] [27] 

J-Integral Solutions 

The J-integral is an important parameter in evaluating crack growth and crack stability based 

on elastic-plastic fracture mechanics, which assumes that the crack grows by ductile tearing 

caused by remotely applied tension and bending loads.  The J-integral solution models 

[8],[9],[21],[23],[30]-[36] are summarized in Table 6.  However, comparing these models was 

not a focus of the benchmark study. 
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Table 6: J-Integral Solutions 

Crack Type LEI KIWA EMC2 CRIEPI VTT KINS JAEA IPP MPA NRG PSI GRS USNRC SNC SIA 

PTW Crack [23] [8][9] N/A N/A [8] N/A [31] [21] 
[8] 

[32] 
N/A 

[33] 

[34] 

[35] 

[23] 

[34] 
N/A [36] [36] 

TW Crack [23] [8][9] [30] N/A [8] [30] [21] [21] 
[8] 

[32] 
N/A 

[33] 

[34] 

[35] 

[23] 

[34] 
[30] [36] [36] 

Net-Section Collapse Models 

For circumferential cracks, the net-section collapse model is commonly used to determine 

whether a component with a crack of a specific size will remain stable under specified loading 

conditions.  The list of net-section collapse solutions [8],[13],[21],[23],[30],[37]-[47] is 

summarized in Table 7.   

Table 7: Net-Section Collapse Models 

Crack Type LEI KIWA EMC2 CRIEPI VTT KINS JAEA IPP MPA NRG PSI GRS USNRC SNC SIA 

PTW Crack [37] [8] [38] N/A [17] [38] 
[13] 

[41] 
[42] N/A [44] [23] [45] [38] 

[38] 

[47] 

[38] 

[47] 

TW Crack [37] [8] 
[39] 

[40] 
N/A [17] [39] 

[13] 

[41] 

[21] 

[43] 
N/A [44] [23] 

[45] 

[46] 

[39] 

[40] 

[38] 

[47] 

[38] 

[47] 

COD Models 

A COD model is required to calculate the leakage from a TW crack.  For a circumferential 

TW crack, Table 8 summarizes the COD models [22],[46],[48]-[59] used by all the 

participants.  

Table 8: COD Models 

Crack Type LEI KIWA EMC2 CRIEPI VTT KINS JAEA IPP MPA NRG PSI GRS USNRC SNC SIA 

TW Crack 
[48] 

[49] 

[50] 

[51] 
[52] N/A 

[52] 

[53] 

[54] 

[53] 

[54] 

[55] 

[56] [57] 
[46] 

[58] 
[22] [59] 

[46] 

[58] 
[55] 

[52] 

[53] 

[54] 

[52] 

[53] 

[54] 

Leak Rate Models 

The ability to predict leak rates from potential TW cracks is central to the LBB concept.  The 

most prominent leak rate codes used by the participants were SQUIRT [60] and LEAPOR 

[61], which both treat crack morphology similarly.  A comprehensive description of the latest 

development in leak rate models can be found in Section 2.2.9 of Reference [62].  A four-

regime leak rate model was developed and briefly described as follows: 

1) The model for Regime 1 is based on the empirically adjusted, homogeneous equilibrium 

model originally developed by Henry and Fauske in References [63]-[66] for choked, 

two-phase flow through tight cracks.  Further extensions to the Henry-Fauske are 

documented in References [67]-[69]. 

2) Regimes 2 and 3 make the transition from Regime 1 to 4 and employ the Henry-Fauske 

approach with some additional constraints [70].  In Regime 2, the mass flux (leak mass 

per area per second) is assumed to be constant and calculated at the ratio of the effective 

flow path length to the hydraulic diameter equal to 30, the value that defines the 

boundary between Regimes 1 and 2. 

3) Regime 3 is a linear interpolation of the square of the mass flux between Regime 2 and 

Regime 4 using the ratio of the effective flow path length to the hydraulic diameter as 

the interpolant variable. 
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4) Regime 4 is based on Bernoulli’s equation for an inviscid fluid along a streamline with 

inclusion of a discharge coefficient to add an empirical correction for viscous losses. 

An extensive review of other leak rate models and their comparisons to a set of benchmark 

problems can be found in References [71] and [73].   

There are two methods in implementing the leak rate code into the PFM code:  

1) Direct call (DC) – The leak rate code is called by the PFM code at every time step.  

2) Look-up table (LUT) – A pre-processor generates leak rate LUTs for each supported 

degradation mechanism for ranges of COD, crack length, weld thickness, pressure, and 

temperature values.  The leak rates are then interpolated from the LUTs by the PFM 

code each time step.  

The participants’ responses for leak rate models are summarized in Table 9. 

Table 9: Leak Rate Models 

Crack Type LEI KIWA EMC2 CRIEPI VTT KINS JAEA IPP MPA NRG PSI GRS USNRC SNC SIA 

Models 
[68] 

[69] 

[60] 

[68] 

[74] 

[61] N/A N/A 
[60] 

[61] 

[66] 

[75] 
N/A [46] 

[63] 

| 

[66] 

N/A N/A 

[63] 

| 

[70] 

[60] 

[61] 

[60] 

[61] 

Implementation 

Method 
DC DC DC N/A DC DC LUT N/A DC DC LUT DC LUT LUT LUT 

SCC Growth Models 

For the interests of the present benchmark project, time-dependent growth models for stress-

corrosion cracking (SCC) are presented.  Table 10 presents the information received from the 

participants [76]-[95].  Most of the PFM codes have multiple crack growth model 

implementations: tabular form, Paris Law type of relationship, PWSCC-specific model, 

intergranular stress corrosion cracking (IGSCC)-specific model, and other types.  

Table 10: SCC Growth Models 

 LEI KIWA EMC2 CRIEPI VTT KINS JAEA IPP MPA NRG PSI GRS USNRC SNC SIA 

Tabular Form 

 (K vs. da/dt) 
√ √ - - - - - - - - - - - √ √ 

Paris Law 

(K vs. da/dt) 
√ √ √ - √ √ - - - - √ √ - - - 

PWSCC √ √ [76] - [77] [76] 
[82] 

[83] 
- - - 

[89] 

[90] 

[89] 

[90] 

[91] 

[92] 

[93] 

[94] 

[76] [76] 

IGSCC - √ 
[78] 

[79] 
- - 

[78] 

[79] 

[12] 

[81 
- - - - - - [95] [95] 

Other SCC - - - [12] - [80] 
[84] 

[85] 
[86] [8] - 

[87] 

[88] 

[87] 

[88] 
- - - 

Acceptance Criteria for PFM Applications 

The acceptance criteria vary significantly with the intended applications.  For example, use of 

PFM results to optimize inspection scope and frequency would require a different acceptance 

criterion than the use of PFM results to disposition detected flaws for fitness-for-service 

purposes.  When the questionnaire was prepared, only limited PFM piping applications had 

been accepted by the regulatory bodies.  The acceptance criteria will likely evolve with time 

through more applications by both industry and the regulatory bodies.  Hence, both short- and 

long-term acceptance criteria data were solicited. 
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Organizations from 11 countries provided their short-term acceptance criteria.  These 

responses fell into four categories: 

1) PFM must be performed for the nuclear power plant to provide as comprehensive a 

picture of safety as possible.  This is the approach in Sweden, according to KIWA.  

2) PFM is used to support or supplement DFM.  This response was received from SNC in 

Canada, VTT in Finland, GRS in Germany, NRG in Netherlands, and CRIEPI in Japan.  

3) PFM is used in general structural integrity assessments.  This response was received 

from LEI in Lithuania, PSI in Switzerland, and IPP in Ukraine. 

4) For reactor coolant loop piping, a representative value for the probability of fluid system 

pipe rupture which would qualify as “extremely low” would be of the order of 10−6 per 

reactor year when all rupture locations are considered in the fluid system piping or 

portions thereof [96]. This response was received from the USNRC in the USA. 

Organizations from three countries provided responses to the long-term acceptance criteria as 

follows:   

1) According to SNC, although acceptance criteria are under development in Canada, they 

will heavily depend on the intended applications.  If the objective is to demonstrate 

pressure boundary integrity of American Society of Mechanical Engineers (ASME) 

Class 1 piping (e.g., flaw disposition), then the concept of extremely low probability 

(e.g., 10-6 annual failure frequency) might be acceptable.  For applications to support 

Level 3 defence-in-depth (safety analysis focused on prevention of core damage or large 

release), the acceptance criteria could be back-calculated from the core damage 

frequency or large release frequency.  

2) According to PSI, although acceptance criteria are under development in Switzerland, 

they will heavily depend on the intended applications.  To ensure the structural integrity 

of SA 508 Grade 1 piping and nozzle (e.g., flaw disposition), the concept of extremely 

low probability (e.g., 10-9 failure frequency) could be acceptable to the regulator. 

3) According to the USNRC, in the USA, Regulatory Guide 1.174 Revision 3 [97] 

provides approaches for developing risk-informed applications for licensing basis 

changes that consider engineering issues and apply risk insights.  As part of the 

supporting engineering analysis, the licensee should evaluate the proposed licensing 

basis change with regard to the principles of maintaining consistency with the defence-

in-depth philosophy, maintaining sufficient safety margins, and ensuring that proposed 

increases in core damage frequency and large early release frequency are small and 

consistent with the intent of the NRC’s Safety Goal Policy Statement.  In addition, 

Regulatory Guide 1.245 [98] describes a framework to develop the contents of a 

licensing submittal when performing PFM analyses in support of regulatory 

applications. 

Summary 

This paper provides a high-level overview of the responses to the questionnaire on PFM code 

capabilities as they related to modeling PWSCC for circumferential cracks.  The extensive list 

of references for the various fracture mechanics models provided in this paper would be 

useful to developers for future PFM code design and benchmarking.  The information has 

been used for developing more effective benchmark problems and for interpreting code-to-

code differences in the benchmark problem results.  Both DFM and PFM benchmark results 

will be presented in upcoming international conferences or seminars.  
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Appendix A: Acronyms 

AFCEN 
Association française pour les règles de conception et de construction des matériels des 

chaudières électro-nucléaires 

ASME American Society of Mechanical Engineers 

BPVC Boiler and Pressure Vessel Code 

CDF core damage frequency 

CFP crack face pressure 

COD crack opening displacement 

CRIEPI Central Research Institute of Electric Power Industry 

CSA Canadian Standards Association 

DFM deterministic fracture mechanics 

Emc2 Engineering Mechanics Corporation of Columbus 

EPFM elastic plastic fracture mechanics 

EPRI Electrical Power Research Institute 

GRS Gesellschaft für Anlagen- und Reaktorsicherheit 

IEC International Electrotechnical Commission 

IEEE The Institute of Electrical and Electronics Engineers 

IGSCC intergranular stress-corrosion cracking 

ISO International Orginazation for Standardization 

JAEA Japan Atomic Energy Agency 

JSME Japan Society of Mechanical Engineers 

KINS Korea Institute of Nuclear Safety 

KIWA Kiwa Technical Consulting AB 

LEI Lithuanian Energy Institute 

LRF large release frequency 

MPA Materialprüfungsanstalt, University of Stuttgart  

NRC Nuclear Regulatory Commission 

NRG Nuclear Research and Consultancy Group 

PFM probabilistic fracture mechanics 

PSI Paul Scherrer Institut 

PTW part-through-wall circumferential crack 

TW through-wall circumferential crack 

PWSCC primary water stress-corrosion cracking 

QoI quantity of interest 

SCC stress corrosion crakcing 

SIA Structural Integrity Associates 

SIF stress intensity factor 

SQA 
software quality assurance standards such as American Society of Mechanical Engineers NQA-1, 

“Quality Assurance Requirements for Nuclear Facility Applications” 

SNC SNC-Lavalin Inc. 

USNRC United States Nuclear Regulatory Commission 

VTT VTT Technical Research Centre of Finland 
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