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INTRODUCTION 

 

In current engineering practice, the control of the cracking state is aimed at using a set of design 

guidelines (Eurocode 2; Model Code 1990; Model Code 2010 and others) to limit the stress state, 

the crack width and the deflection level in reinforced concrete elements. It all comes eventually to 

defining an accurate reinforcement ratio 𝜌 to keep a maximal spacing value 𝑠𝑟,𝑚𝑎𝑥 smaller than a 

given criterion for a given Limit State 𝑠𝑟
𝐿𝑆. So, the challenge consists of predicting for each 

concrete type what would be its associated maximal spacing representing a stabilized cracking 

state and allowing the quantification of the maximal crack opening based on the strain gap between 

steel and concrete.  

 

The maximal spacing value is a random quantity; meaning that one gets a maximal value given a 

certain probability of exceedance 𝑝𝑓 or a confidence interval. The uniqueness of such value is only 

obtained when the probability threshold (on the high side of the mean value) is fixed. Accordingly, 

for an accurate measurement of the maximal spacing for a given concrete type, a large set of tests 

should be achieved to explore tail distributions. As this remains hard to achieve, usual practice 

consists of considering a limited number of experimental tests to quantify the mean spacing value 

𝑠𝑟,𝑚 and associate an amplification factor 𝜆 = 𝑠𝑟,𝑚𝑎𝑥/𝑠𝑟,𝑚 (from 1.5 in Code Mode 1990 to 1.7 in 

Eurocode 2 and Model Code 2010) representing the tail distribution to the best of our knowledge. 

However, one can note that such empirical approaches – or at best semi-empirical – do not allow 

a reliable quantification of the risks associated with the control of cracking in structures. Indeed, 

they remain intrinsically dependent on the selected experimental design plan, which explains the 

observed discrepancies among existing regulatory codes, Lapi, M., et al. 2018..  

 

To overcome the limitations related to the experimental characterization of tail distributions of 

cracks’ spacing values, numerical analyses are usually of interest. In the literature, one can find 

several approaches to deal with cracks’ spacing quantification. Early works on the topic involve 

the demonstration of the experimentally observed dependence of the mean spacing 𝑠𝑟,𝑚 on the 

ratio 𝜑 𝜌⁄  of steel diameter 𝜑 to the effective reinforcement ratio 𝜌 (bond theory in Watstein & 

Parsons (1943)) and its dependence on the cover distance c (no bond theory in Broms (1965)). In 

terms of recent advancement on the matter, Beeby (2004) proposes a model based on a steel to 

concrete transfer length and demonstrates theoretically the linear relationship between the mean 

spacing value 𝑠𝑟,𝑚 and the product of ratios (𝜑 𝜌⁄ )(𝑅𝑡 𝜏𝑚𝑎𝑥⁄ ) with 𝜑 the bar diameter, 𝜌 the 
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reinforcement ratio, 𝑅𝑡 the tensile strength and 𝜏𝑚𝑎𝑥 the maximal steel-concrete bond. The same 

formulation is retained in Model Code 2010. Yet, the constants of the linear equation remain 

defined based on empirical fitting (best-fit equation based on statistical analysis of experimental 

data). Later on, Beeby & Scott (2004) extended the model in Beeby (2004) to a probabilistic 

framework using a normal and uncorrelated spatial random field associated with the tensile 

strength 𝑅𝑡 over a discretized beam’s length. Then, through several runs, authors compute 

iteratively the positions of cracks and define the probability density function of spacing values. 

Though it is an interesting approach, authors did not consider any size effects in their developments 

nor justify the nature of the used random field. Indeed, the tensile strength follows rather a Weibull 

distribution than a normal one, with different tail behaviors as proposed by Bažant & Le (2017). 

Also, Beeby (2004), Beeby & Scott (2004) neglected the spatial correlation of 𝑅𝑡 which is a strong 

hypothesis given experimental evidence on the matter – see Vořechovský (2008).. Such spatial 

correlation is directly linked to the material intrinsic heterogeneity (voids and aggregates spatial 

distribution). 
 

Hence, the main purpose of this paper is to suggest a new theoretical and practical methodology 

allowing the accurate and physical prediction of cracks’ spacing distribution in reinforced concrete 

structures. The foreseen improvements concern (a) the introduction of size effects in the physical 

formulation of the model (b) the introduction of the  spatial distribution of the tensile strength in a 

realistic way (spatially correlated Weibull distribution) and (c) the probabilistic coupling using 

non-intrusive techniques.  
 

PHYSICAL MODEL FOR CRACKING IN RC BEAMS 

 

The proposed model hereafter is based on the same basic principle as the one used in Beeby (2004) 

using a representative reinforced concrete beam with a length 𝑙, a concrete section of 𝐴𝑐, a steel 

section of 𝐴𝑠 (associated to a diameter 𝜑) and a bond-slip law subjected to a normal and axial load 

N.  

 

 
Figure 1. Visualization of the beam element between two boundaries (c and s stand for concrete and steel 

materials respectively). 

 

Given the hypotheses of perfectly brittle concrete behavior, linear elastic behavior of steel prior to 

crack stabilization and a linear bond-slip law ( 
τb(s) = a s), one can easily solve the bond-slip differential equation. In terms of stress distribution 

in concrete between two cracks (at positions −
𝑙

2
 and 

𝑙

2
 with the element’s origin at mid-distance), 

this writes: 

 

 σc(x) =
Nπφ

AcAsEs
 (1 −

cosh(√aχ x)

cosh(√aχ
l

2
)
) (1) 
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One obtains a new crack within the element length 𝑙 when the stress level 𝜎𝑐 at a given position 

reaches the material tensile strength at the same point: 𝜎𝑐 = 𝑅𝑡. In the absence of spatial variation, 

this happens at mid length of the free edges. To be more physically representative, two main 

improvements are considered: 

 

(a) Definition of the tensile strength in concrete using an adapted Size Effect Law. In this 

work, we are only interested in Type I size effect (denoted also energetic-statistical size 

effect in Bažant & Chen (1997)) in the absence of deep notches or a large traction-free 

cracks in the structural volume (this is in line with the multi cracking behaviour observed 

in the case of 1D-tensionned beams). The size effect law generally involves an effective 

volume V at the structural element scale, a reference volume V0 at which the measurement 

of the tensile strength is achieved Rt,0 and its associated Weibull modulus m. Volumes V0 

and V are estimated using the criterion defined in the WL² model in Sellier & Millard 

(2014). 

 

 Rt(V) = Rt,0 (
V

V0
)

− 
1

m
 (2) 

 

(b) Definition of a spatially correlated Weibull random field associated to the tensile strength 

using an exponential quadratic correlation function a given fluctuation length 𝑙𝑓𝑙𝑢 – see 

Baroth et al. (2011), Loève (1960), Nataf (1962). 

 

Figure 2. Effect of spatial correlation on the Weibull random field realizations. 
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Calculations are performed according to a step by step process: 

 

(a) Define a representative beam section and the material properties 

(b) Discretize the beam into finite elements (the number of elements should be sufficient to 

describe objectively the spatial correlation and the number of cracks) 

(c) Evaluate size effects on the tensile strength in the beam 

(d) Generate several realizations of the random field associated to the tensile strength 

(e) For each realization, use an iterative process to increase the axial load activating one crack 

at a time (where the stress in concrete reaches the tensile strength) until the stabilized stage 

is reached. 

(f) Consider all cracks’ position to post-process the probability density function and achieve 

reliability analysis if necessary. 

 

One should note that for a number of simulations Nsimu, one can only quantify tail probabilities 

higher than 𝑝𝑓 = 102−log10 𝑁𝑠𝑖𝑚𝑢). 

 

EXPERIMENTAL VALIDATION 

 

In the experimental work of Farra & Jacoud (1993), several reinforced concrete beams are 

subjected to tensile loads for cracks’ spacing identification at the stabilized state. The cross section 

of these beams is 10 cm x 10 cm. The length is 1.15 m. Three reinforcement ratios (0.79%, 1.56%, 

and 3.24%) are considered. Seven concrete types with compressive strength between 29.9 MPa 

and 55.4 MPa are explored. The reference tensile strength values are measured using cylindrical 

specimen of 16 cm x 32 cm under direct tensile loads. Finally, for each specimen, three tests are 

performed. This is rather limited for an objective experimental probabilistic quantification. 

However, the observed results can still be considered for the model validation; especially in terms 

of physical tendencies and the quantitative analysis of the mean spacing values.  
 

Numerical simulations are limited herein to Nsimu = 1000 realizations of the Weibull random 

field for each beam.  

 

The obtained results summarized in Table 1 show that the fully predictive model shows a 

satisfactory estimation of the mean spacing compared to other empirical models fitted empirically 

to the data base. Nevertheless, for those empirical models, such accuracy is not guaranteed if other 

data are considered. It is important to underline that size effects are not that pronounced at the 

scale of Farra & Jacoud beams (Rt(Veff) Rt,0 ⁄ ≈ 0.93) which explains why empirical models using 

the tensile strength at the specimen scale still work accurately. As for the randomness of the 

spacing values for each beam, the Model Codes applied within a probabilistic framework 

underestimates the variation of the spacing values. In part, this is directly due to the lack of spatial 

variation in the Model Code formula. On the other hand, the newly proposed model shows higher 

variation that depends on the considered concrete type and the measured randomness of the tensile 

strength.  
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Table 1: Mean spacing values and their coefficients of variation: experimental vs. numerical. 

Beam reference 

 

Experimental 
Models 

New model (Fully predictive) Model Code (Empirical) 

Mean value  (mm) Mean value (mm) CoV (%) Mean value  (mm) CoV (%) 

N10-10 237 213 21 214 3 

N10-14 173 146 19 174 2.6 

N10-20 129 118 19 138 2.2 

N20-10 222 238 22 221 3.6 

N20-14 146 156 20 179 3.2 

N20-20 141 118 18 142 2.7 

N30-10 208 233 23 216 3.6 

N30-14 180 150 20 175 3.1 

N30-20 142 114 17 140 2.6 

N40-10 193 239 22 215 2.4 

N40-14 180 147 20 175 2.1 

N40-20 142 110 16 139 1.8 

N12-10 238 200 24 191 4.8 

N12-14 165 129 21 158 4.1 

N12-20 153 104 12 128 3.4 

N22-10 192 197 25 187 5.2 

N22-14 168 126 21 154 4.4 

N22-20 131 102 11 126 3.6 

N32-10 236 194 24 185 3.7 

N32-14 152 120 20 153 3.1 

N32-20 137 100 8 125 2.6 

N42-10 208 213 25 191 4.3 

N42-14 160 126 20 158 3.7 

N42-20 130 101 9 128 3.0 

 

 

Also, given the probabilistic framework of the newly suggested method, one can access to the 

cumulative distribution functions of the cracks’ spacing values. Based on a selected probability of 

failure, one can also define a maximal spacing value not to be exceeded for the crack control within 

the design phase. In practice, one selects a 1-α quantile which represents the risk of having values 

at tail distribution. For the spacing values, the interest is geared towards the high range of values 

(as it increases the crack opening values). So, by giving the value of α, one defines a probability 

of not exceeding a maximal value of which the probability is 1-α/2. One should note that the value 

of α varies depending on the considered application and the operational context. 

 

Finally, compared to other methods, the suggested model offers a rigorous theoretical framework 

to (a) compute the crack spacing values in a fully predictive way based on measurements achieved 

at the specimen scale (empirical fitting is absent at the beam scale) (b) predict representative 

variation of the spacing values accounting for size effects and for the spatial randomness of the 

tensile strength (c) predict the full cumulative distribution function (or probability distribution 

function) to deduce the maximal spacing value not to be exceeded for a given probability of failure. 
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Figure 3. Cumulative distribution functions (CDFs) of the spacing values. 

 

 

A NEW FORMULATION OF THE MEAN AND MAXIMAL CRACKS’ SPACING VALUES 

 

Theoretical formulation 

 

The foreseen function shape is inspired from the Model Code formulae with the introduction of 

size effects parameters (based on the uses size effect law): 

 

 𝑠𝑟𝑚 = 𝐴1 ∗ 𝑐 + 𝐴2  (
𝑅𝑡,0

𝜏𝑚𝑎𝑥
) (

𝑉

𝑉0
)

− 
1

𝑚
 (

𝜑

𝜌
) (3) 

 

with c the cover distance, 𝑅𝑡,0 the tensile strength measured at the reference volume 𝑉0, 𝜏𝑚𝑎𝑥 the 

maximal bond stress.  

 

As for the maximal spacing value, defined using the ratio 𝜆 = 𝑠𝑟,𝑚/𝑠𝑟,𝑚𝑎𝑥 in current regulatory 

codes, the proposed model allows the identification of the following relationship (associated to a 

Lognormal distribution of spacing values): 

 

 𝜆(𝛼) =
exp(√2 𝜎 𝑘𝛼+𝜇)

𝑠𝑟𝑚
 (4) 

 

with 𝑘𝛼 = 1.1 𝑒−1,92 𝛼 , 𝜇 = ln(𝑠𝑟𝑚/√1 + 𝐶𝑜𝑉𝑠𝑟/𝑠𝑟𝑚), 𝜎 = √ln(1 + 𝐶𝑜𝑉𝑠𝑟/𝑠𝑟𝑚) and 𝐶𝑜𝑉𝑠𝑟 the 

coefficient of variation associated to the spacing values. 

 
Identification of constants 

 

In this part, it is proposed to investigate numerically the size effects on the computed mean and 

coefficient of variation of the spacing values. To do so, the same reinforcement ratios defined by 

Farra & Jacoud (1993) are retained and extended to the following numerical design plan for the 

following beam sections: 0.1 x 0.1 (reference beam), 0.2 x 0.2, 0.5 x 0.5, 0.8 x 0.8, 1.2 x 1.2. One 

should note that the last sections are rarely encountered in standard engineering applications and 

are merely considered to explore the full size effect law (for small and large volumes). 
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Based on the achieved numerical calculations, the unknown parameters verify 𝐴1 =1.36, 

𝐴2 =0.65, 𝑚 = 0.2 + 1.2/𝐶𝑜𝑉𝑅𝑡
 and 𝐶𝑜𝑉𝑠𝑟 = 0.279 𝐶𝑜𝑉𝑅𝑡

+ 0.19 with CoVRt
 the measured 

coefficient of variation of the tensile strength (usually around 10% at the specimen scale). 

 

 
Figure 4. Comparative analysis of numerical and fitted mean spacing values. 

 

Impact on the estimated mean and maximal cracks spacing values 
 

Eventually, as one defines a given probability of failure 𝑝𝑓 = 1 − 𝛼/2, one gets a corresponding 

ratio 𝜆 and a maximal spacing threshold for design purposes. As one can see, the values of 𝜆 are 

not constant and not forcibly equal to 1.5 and 1.7 as provided in Eurocode 2 and Model Codes; at 

least not for low values of 𝛼. In other words, the values in regulatory codes refer to high values of  

20% ≤ 𝛼 ≤ 30% which refers to probabilities of failure around 0.85 ≤ 𝑝𝑓 ≤ 0.9 (and not 0.95 as 

usually used in engineering applications). 

 

In fine, by using the set of equations here above, one can easily deduce the mean and maximal 

spacing values of a given beam characterized by its size, stress distribution (tensile vs. bending), 

ratio 𝜑 𝜌⁄ , variation of the tensile strength 𝐶𝑜𝑉𝑅𝑡
and probability of exceedance 𝑝𝑓 = 1 − 𝛼/2 

 

CONCLUSION  
 

The main aim of this research paper is to propose a probabilistic formulation of the crack’s spacing 

values for axially reinforced members subjected to pure tensile loads. Such effort is of interest to 

enhance the predictive crack control in terms of mean and maximal crack spacing values and its 

associated crack openings. To reach the foreseen goal, the following theoretical advancements are 

achieved (a) considering an analytical solution for the bond-slip differential equation based on a 

linear bond-slip law (b) considering an energetic-statistical size effect law relating the tensile 

strength property to the effective structural volume (c) considering a spatially correlated Weibull 

random field associated to the tensile strength property. By the use of Monte Carlo Methods (which 

involves in this work the generation of several random fields), the stochastic model leads to the 

identification of a probability density function of the spacing values. From this distribution, one 

gets a mean estimate, a coefficient of variation and, given a certain probability threshold, the 

maximal crack spacing not to be exceeded.  

 

Eventually, by exploring an extended numerical design plan, a set of equations is suggested for 

engineering applications. These expressions relate the mean spacing value to the ratio φ ρ⁄  and the 
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ratio 𝑅𝑡,0 τmax⁄  as already suggested in the Model Code formulae. In this work, it is recommended 

to include also a term proportional to the volume of the beam to the power (-1/m) to account for 

size effects on the tensile strength. As for the maximal spacing value, a theoretical approach is 

proposed based on the hypothesis of a Lognormal distribution of spacing values and of a 

coefficient of variation strongly correlated to the coefficient of variation of the tensile strength. 

Both of these hypotheses are explored in the present work by numerical means. 
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