

Transactions, SMiRT-26 Berlin/Potsdam, Germany, July 10-15, 2022 Division V

DYNAMIC CHARACTERISTICS TESTS OF FULL-SCALE LEAD RUBBER BEARING (LRB)

Kentaro Mori¹, Gentaro Nagashima², Takahiro Mori³, Akitsugu Muramatsu⁴ and Takanori Ogata⁵

¹ Senior Engineer, Mitsubishi Heavy Industries, Ltd., Hyogo, Japan (kentaro.mori.ea@nu.mhi.com)

² Principal Engineer, Mitsubishi Heavy Industries, Ltd., Hyogo, Japan

³ Technology Specialist, Bridgestone Corporation, Kanagawa, Japan

⁴ Chief Manager, Taisei Corporation, Tokyo, Japan

⁵ Senior Engineer, Obayashi Corporation, Tokyo, Japan

ABSTRACT

Several types of dynamic tests were performed using a full-scale lead rubber bearing (LRB) that has a lead plug embedded at the centre of laminated natural rubber. The horizontal and vertical characteristics of the LRB due to various shear strains, frequencies, cyclic effect and compressive stresses were obtained by the experiments. It was confirmed that the variations of the obtained horizontal and vertical characteristics satisfied allowable variations defined in European standard for Anti-seismic devices (EN15129-2009, See References 1).

INTRODUCTION

In order to improve safety of nuclear power plants (NPPs) against high seismic condition, it had been studied to apply seismic isolation devices to reactor building in NPPs in a past project. A large size of lead rubber bearing (LRB) that has a lead plug embedded at the centre of laminated natural rubber had been developed by Bridgestone Corporation (Figure 1). In addition, static and quasi-static tests using full-scale of the LRB had been conducted to confirm its failure capacity in the project (See Reference 2). Dynamic tests using small size LRBs for typical industries had been conducted to confirm dynamic characteristics, but there was no data of dynamic characteristics of the LRB. In this experiments, dynamic tests were performed to confirm dynamic characteristics of the LRB. Taking into consideration the size and weight of the LRB, dynamic tests were performed using Seismic Response Modification Device (SRMD) at University of California San Diego.

Lead Plug Natural Rubber			
Reinforcing	Diameter of isolator D _f	1600	mm
Steel Plate	Total thickness of rubber h _R	260	mm
	Thickness of rubber sheet t _R	10.0	mm
Cover Rubber	Number of rubber layers n _R	26	-
	Thickness of inner steel plate ts	6.8	mm
	Number of steel plate layers n _s	25	-
Flange	Diameter of lead plug D _p	392	mm

Figure 1. Specifications of Full-Scale LRB

OUTLINES OF TESTS

Several types of dynamic tests are performed using full-scale LRBs in this study. Table 2 shows a test series of the dynamic tests. Dependence of horizontal and vertical characteristics due to various shear strains, frequencies, cyclic effect and compressive stresses (ID 2 through 5) were confirmed in accordance with European standard for Anti-seismic devices (EN15129-2009) followed by basic characteristics tests (ID 1). As basic characteristics of the LRB, a horizontal stiffness (post yield stiffness) K_2 , a yield strength Q_d and a vertical compressive stiffness K_v are confirmed in this test series. Total three (3) specimens are used for the tests.

ID	Test Objectives
1	Basic characteristics (K_2 , Q_d and K_v)
2	Dependence of horizontal characteristics on rubber shear strain
3	Dependence of horizontal characteristics on frequency
4	Dependence of horizontal characteristics on repeated cycling
5	Dependence of vertical stiffness on compressive stresses

Table 2: A Series of Full-Scale Tests

TEST RESULTS

Basic characteristics test (ID1)

The purpose of this test is to confirm the basic characteristics $(K_2, Q_d \text{ and } K_v)$ of the LRB. The test condition is as follows.

- Shear strain of LRB: ±100% (horizontal displacement is 260mm)
- Compressive stress: 5 MPa const.
- Shaking frequency: Horizontal 0.33Hz (sinusoidal wave)
- Number of test specimen: 2 specimens

Figure 2 shows horizontal load-displacement curve in 3rd cycle. Test results match well to the target of basic characteristics of the LRB. It is also confirmed that there are little differences between the specimens.

Table 3 shows the basic characteristics test results. The test results (K_2 , Q_d and K_v) are averaged by the results of two (2) specimens. The allowable variations to the basic specifications are specifically set for NPPs considering the seismic design. It is confirmed that the basic characteristics obtained by the test satisfy the allowable variations, except yield strength Q_d . It is considered that the variation of Q_d of the

LRB is caused by an increasing of a diameter of lead plug comparing to LRBs for typical buildings. It is confirmed that a dependence of Q_d on frequency based upon the test data should be incorporated into a basic specification of the LRB which is calculated in delivery inspection (static test). In the following dynamic tests (ID 2 through 5), the basic specification of K₂ and Q_d are set based upon the test results. The basic specification of K_v is set as same as original spec., since K_v is NOT sensitive depend on frequency and it is based upon a lot of delivery inspection data in the past tests (See References 2).

Characteristics	Test Results (Average)	Original Spec.	Ratio	Allowable Variations
K ₂ (kN/mm)	<u>3.34</u>	3.17	1.04	0.9~1.1 (±10%)
$Q_{d}(kN)$	<u>1058</u>	890	1.19	0.9~1.1 (±10%)
K _v (kN/mm)	6122	<u>7480</u>	0.82	0.8~1.2 (±20%)

Table 3 Basic Characteristics Test Results

Dependence of horizontal characteristics on rubber shear strain (ID2)

The purpose of this test is to confirm the dependence of horizontal characteristics (K_2 and Q_d) on rubber shear strain of the LRB. The test condition is as follows.

- Shear strain of LRB: ±50%, ±75%, ±100%, ±150%, ±200%, ±250%
- Compressive stress: 5 MPa const.
- Shaking frequency: Horizontal 0.33Hz (sinusoidal wave)
- Number of test specimen: 2 specimens

Table 4 shows the minimum and maximum variations of K_2 and Q_d . The variations is calculated by "Test result at 3rd cycle in ID2/basic spec. in ID1" and the allowable variations is set as $\pm 20\%$ in accordance with EN15129. Both K_2 and Q_d satisfy the allowable variation in case that the shear strain is greater than $\pm 75\%$. It is confirmed that K_2 decreases slightly with the increasing shear strain and Q_d is constant with shear strains.

Table 4 variations of nonzontal characteristics (K_2 and Q_d)			
Contents	Test results		Allowable
	Min.	Max.	variation
K ₂	-20%	+17%	±20%
Q _d	-8%	+2%	±20%

Table 4 Variations of horizontal characteristics (K₂ and Q_d)

Dependence of horizontal characteristics on frequency (ID3)

The purpose of this test is to confirm the dependence of horizontal characteristics (K_2 and Q_d) on frequency of shaking. The test condition is as follows.

- Shear strain of LRB: ±100%
- Compressive stress: 5 MPa const.
- Shaking frequency: Horizontal 0.05Hz, 0.25Hz, 1.0Hz (sinusoidal wave)
- Number of test specimen: 3 specimens

Table 5 shows the minimum and maximum variations of the K_2 and Q_d . Figure 3 shows the ratio of K_2 and Q_d on various shaking frequencies. Both K_2 and Q_d satisfy the allowable variation in accordance with EN 15129. According to the test results, it is confirmed that the dependence of horizontal characteristics (K_2 and Q_d) on frequency is greater than past experimental tests for LRBs for typical buildings whose size is smaller than the LRB (test specimens).

Contents	Test results		Allowable	
	Min.	Max.	variation	
K ₂	-7%	+15%	±20%	
Q _d	-13%	+19%	±20%	

Table 5 Variations of horizontal characteristics (K₂ and Q_d)

Figure 3 Horizontal characteristics on various shaking frequencies

Dependence of horizontal characteristics on repeated cycling (ID4)

The purpose of this test is to confirm the dependence of horizontal characteristics (K_2 and Q_d) on repeated cycling. The test condition is as follows.

- Shear strain of LRB: ±100%
- Compressive stress: 5 MPa const.
- Shaking frequency: Horizontal 0.1Hz (sinusoidal wave)
- Number of cycle: 10 cycles
- Number of test specimen: 2 specimens

Table 6 shows the variations of the horizontal characteristics (K_2 and Q_d) at 10th cycle comparing to the one at 2nd cycle and 1st cycle. Figure 4 shows the ratio of K_2 and Q_d on repeated cycling. K_2 satisfy the allowable variations in accordance with EN 15129. It is confirmed that the dependence of Q_d on repeated cycling is greater than past experiences of LRBs for typical buildings whose size is smaller than the LRB. It is necessary to conduct a confirmatory analysis to confirm the LRB's behaviour using the test results in next phase study. It would also be necessary to accumulate an additional data of the full-scale LRBs on repeated cycling.

Contents	Test results	Allowable	
		variation	
K_2 (Ratio of 10 th cycle/ 1 st cycle)	-8%	$\pm 40\%$	
K_2 (Ratio of 10 th cycle/ 2 nd cycle)	+2%	±30%	
Q _d (Ratio of 10 th cycle/ 2 nd cycle)	-38%	±30%	

Table 6 Variations of horizontal characteristics (K₂ and Q_d)

Dependence of vertical stiffness on compressive stresses (ID5)

The purpose of this test is to confirm the dependence of vertical stiffness (K_v) on compressive stresses. The test condition is as follows.

- Shear strain of LRB:0% (const.)
- Compressive stress: 5 MPa ± 2.5MPa
- Shaking frequency: Vertical 0.0125Hz, 0.33Hz (sinusoidal wave)
- Number of test specimen: 2 specimens

Figure 5 shows the variations of the vertical stiffness (K_v) on compressive stresses. The ratio of K_v is calculated by "test results at 3rd cycle in ID 5/basic spec. in ID1". The maximum variation of K_v is -18% comparing to the basic specification of the LRB. It is confirmed that the variation obtained by the test is within the allowable variations in accordance with EN 15129 (±30%).

Figure 5 Vertical stiffness on compressive stresses

Summary of Test Series (ID 2 through 5)

Table 7 shows the summary of the results. The horizontal and vertical characteristics of the LRB obtained by the experiments satisfy the allowable variations in accordance with EN 15129. It is confirmed that further investigations are necessary regarding a reduction of Q_d of the LRB on repeated cycling to confirm an impact on seismic design of base isolated reactor building in an NPP.

ID	Test Objectives	Allowable Variations	Test Results
ID	Test Objectives		
2	Dependence of horizontal	$K_2:\pm 20\%$	$K_2:-20\% \sim +17\%$
	characteristics on rubber shear	Q_d : ±20%	$Q_d:-8\%$ ~+2%
	strain		
3	Dependence of horizontal	$K_2:\pm 20\%$	$K_2:-7\%$ ~+15%
	characteristics on frequency	Q_d : ±20%	$Q_d:-13\% \sim +19\%$
4	Dependence of horizontal	$K_2:\pm 30\% \ (2^{nd}/10^{th} \ cycle)$	$K_2:+2\%(2^{nd}/10^{th})$
	characteristics on repeated	$\pm 40\%$ (1 st /10 th cycle)	$-8\%(1^{st}/10^{th})$
	cycling	$Q_d : \pm 30\% (2^{nd}/10^{th} \text{ cycle})$	Q_d : -38% (2 nd /10 th)
5	Dependence of vertical stiffness	K _V : ±30%	K _v : -18%
	on compressive stresses		

Table 7 Summary of the Results (ID 2 through 5)

CONCLUSIONS

Several types of dynamic tests were performed using full-scale lead rubber bearings (LRBs) that have a lead plug embedded at the centre of laminated natural rubber. The horizontal and vertical characteristics of the LRB due to various shear strains, frequencies, cyclic effect and compressive stresses were obtained by the experiments. It was confirmed that the variations of the obtained horizontal and vertical characteristics satisfied allowable variations defined in European standard for Anti-seismic devices (EN15129-2009).

REFERENCES

European Committee for Standardization (CEN) (2009), Anti-seismic device, EN15129.

T. Imaoka et al (2015), DEVELOPMENT OF EVALUATION METHOD FOR SEISMIC ISOLATION SYSTEMS OF NUCLEAR POWER FACILITIES -BREAK TEST OF FULL SCALE LEAD RUBBER BEARINGS FOR NUCLEAR FACILITIES, PART 1 OUTLINE OF BREAK TEST OF LRB OF 1.6M IN DIAMETER-, SMiRT23, Manchester, United Kingdom