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ABSTRACT 

 

This paper compares horizontal in-structure response spectra (ISRS) obtained from probabilistic transient 

analyses of the numerical model of an example nuclear plant low-rise shear-wall structure and the ISRS 

obtained from the recorded accelerations in an instrumented low-rise shear-wall building with those from 

standards-based simplified empirical methods outlined in IAEA-TECDOC-348 (1985) and ASCE 7 (2022). 

The goal is to explore whether alternative, simplified procedures for ISRS generation other than numerical 

models and transient analysis might be suitable for broader use in the nuclear industry.  

 

INTRODUCTION 

 

Traditional methods for obtaining ISRS in nuclear plant structures, developed over the last five decades, 

rely on transient analyses of detailed numerical structural models and computing acceleration response time 

histories at various locations of interest. The expected detail and complexity of these numerical models and 

corresponding analysis and post-processing steps have increased as recognition of underlying uncertainties 

and characteristics of building response has evolved. These uncertainties include but are not limited to the 

flexibility of floor slabs, mass and stiffness irregularities, uncaptured components of the ground motion, 

intensity and frequency content of the ground motions, level of inelastic behavior, distribution of seismic 

damage, the contribution of non-structural components such as partition walls to the building stiffness, soil-

structure interaction effects, damping mechanisms, and potential interactions of the non-structural 

components and equipment. These parameters can potentially alter the amplitude and frequency content of 

the floor motions, affecting the ISRS. Although current practices are expected to produce conservative and 

safe designs, it is not clear whether the rigor in transient analysis results in physically accurate estimates of 

ISRS or not.  

 

In parallel to the development of traditional ISRS generation methods relying on transient analysis, 

an increasing number of seismically instrumented buildings have been subjected to actual earthquakes and 

have collected physical response data. For example, the Center for Engineering Strong Motion Data 

(CESMD) (2022) provides a relatively large set of recorded data for various buildings. These broad sets of 

data, combined with analytical solutions of simplified system models, have permitted the development and 

refinement of alternative methods for approximating structure ISRS. Such alternative methods are used for 

seismic design and qualification of non-structural elements in non-nuclear industries (e.g., via ASCE 7 

(2022) and its underlying basis document NIST GCR 18-917-43 (2018) and limited application in non-

power nuclear facilities (e.g., via IAEA-TECDOC-348 (1985)). These methods are efficient and 

straightforward and do not require detailed numerical models or transient analysis. They work best when a 

building is dominated by one mode in each horizontal direction. Given the inherent uncertainties in 
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predicting in-structure demands on components housed inside a building subjected to a seismic event, one 

may ask whether a difference in accuracy warrants the use of complex numerical models and transient 

analysis compared with the simplicity of alternative empirical methods. 

 

This paper aims to demonstrate how reasonably one can estimate the ISRS from the empirical 

methods instead of an extensive SSI model that includes all details and uncertainties in the soil and 

structural properties. The advantage of using the empirical methods is the significant savings in the 

computational resources, project time, and cost by avoiding the generation of detailed numerical models 

needed to generate the response. Since the empirical methods and the instrumentation data are primarily 

available for the horizontal response only at this time, this study considers horizontal response only, and 

the evaluation of the vertical response is not part of the current study. 

 

EMPIRICAL APPROACHES FOR OBTAINING ISRS  

 

ASCE 7 (2022) Procedure 

 

A simplified procedure is provided in Chapter 13 of ASCE 7 (2022) to estimate the maximum acceleration 

to be used to design non-structural components attached at a given height of the building. The non-structural 

components are self-supporting structures other than the building. Equation 13.3-1 of ASCE 7 (2022) 

provides an empirical formula to estimate the horizontal seismic design force as: 

 

�� = 0.4��	
��� ��
��

� ����
���

�     (1) 

 

where �� = Seismic design force; ��	 = Short period spectral acceleration as determined per Section 

11.4.5 ASCE 7-22; 
� = Component Importance Factor as determined per Section 13.1.3 of ASCE 7-22; 

�� = Component operating weight; �� = Factor for force amplification as a function of height in the 

structure as determined in Section 13.3.1.1 of ASCE 7-22; �� = Structure ductility reduction factor as 

determined in Section 13.3.1.2 of ASCE 7-22; ��� = Component resonance ductility factor that converts 

the peak floor or ground acceleration into the peak component acceleration, as determined in Section 

13.3.1.3 of ASCE 7-22; and ��� = Component strength factor as determined in Section 13.3.1.4 of ASCE 

7-22. 

 

Based on Equation (1), the equivalent peak spectral acceleration of the ISRS can be estimated as the 

ratio of ��/�� with ��� =1, and replacing ��	 with the peak foundation input response spectrum, �!"�	: 

 

�# = 0.4�!"�	
� ��
��

� . ���     (3) 

 

IAEA-TECDOC-348 (1985) Procedure 

 

Another simplified procedure is provided in Chapter 8 of IAEA-TECDOC-348 to estimate the ISRS to be 

used to design a piece of equipment attached to the building at a given height. Using this procedure, the 

spectral acceleration of the ISRS can be obtained as: 

 

�# = ��$%& = '%(%)%*%&+/,-     (4) 

 

where %( is the Response Factor which is the ratio of the peak to PGA of the input spectrum; %) is a 

coefficient related to the building damping; %* = 1 + 0.5'123$4516781$987
:3$;-$69 81$987 +; %& is an amplification factor 

due to floor response spectrum as shown in Figure 1; and ,- is the expected building ductility. The 
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parameter =� in Figure 1 is a function of the building and equipment damping ratios, their effective mass 

ratio, and their ductility. 

 

 
Figure 1. Parameter %& in IAEA-TECDOC-348 (1985) 

 

CASE STUDIES 

 

A common type of structure in many nuclear power plants is the low-rise concrete shear wall building. 

Therefore, the case studies in this paper focus on this type of structure to evaluate the validity of the 

empirical procedures for estimating the ISRS for nuclear structures. In these case studies, the ISRS obtained 

from numerical analyses (Case Study 1), and the recorded acceleration data from instruments during actual 

earthquakes (Case Study 2), are compared with those obtained from the empirical methods by IAEA-

TECDOC-348 (1985) and ASCE 7 (2022). 

 

Table 1 shows the parameters used to calculate the peak spectral acceleration of the ISRS at the roof 

of the buildings in the case studies, using the ASCE 7 (2022) approach. Similarly, Table 2 shows the 

parameters used to calculate the ISRS at the roof of the buildings in the case studies using the IAEA 

TECDOC-348 (1985) approach. 

 

Table 1: Input Parameters Used for the ASCE 7 (2022) Method of the Floor Spectral Acceleration  

 

Input 

Parameters 
Value 

Applicable Section of 

ASCE 7 (2022) 


� 1.5 Section 13.1.3 

��� 2.2 Table 13.6.1 

�� 3.5 Equation 13.3-4 

�� 1.3 Equation 13.3-6 

 

Table 2: Input Parameters Used for the IAEA-TECDOC-348 (1985) Method of the ISRS Calculation  

 

Input Parameters Value 
Applicable Section of IAEA-

TECDOC-348 (1985) 

Equipment ductility µe  2 Equation 8.2 

Building ductility µb  2.2 Table 7.3 

D2  1 Table 7.5  

D3  1.5 Equation 7.5 
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CASE STUDY 1 

 

The first case study compares the ISRS obtained from a detailed three-dimensional (3D) probabilistic Soil-

Structure Interaction (SSI) analysis of a Diesel Generator Building (DGB) of a nuclear power plant with 

those obtained from the empirical methods by IAEA-TECDOC-348 (1985) and ASCE 7 (2022). 

 

Description of the model and input data 

 

The building used in this case study is a rectangular 34.5 ft. tall, two-story reinforced concrete shear wall 

structure with plan dimensions of about 135 ft. by 90 ft. It is modeled as a surface-founded structure. Figure 

2 presents a 3D isometric view of the FE model and the cross-sectional elevation view of the DGB. A 

summary of the median structural material properties and the coefficient of variation is provided in Table 

3. 

 

The top 10 ft. of soil profile under the building foundation consists of relatively soft soil with a shear-

wave velocity of approximately 300 ft/s, followed by 10 ft. of slightly stiffer soil with an average shear-

wave velocity of about 650 ft/s, and 10 ft. of relatively stiff soil with an average shear-wave velocity of 

about 2000 ft/s. The average VS30 for the soil material is about 385 ft/s with a logarithmic standard deviation 

range between 0.30~0.80 (varying between individual soil layers). The detailed description of the soil 

properties is outside of the scope of this paper. 

 

The uncertainties in the SSI input parameters are captured by sampling these SSI input parameters 

on their respective distributions to generate model and soil variations, and each variation (case) is uniquely 

paired to an input time history. 30 SSI cases are developed by Latin Hypercube Sampling (LHS) of the 

randomized soil and structural input parameters. Based on LHS, each soil or structural parameter is sampled 

on its respective distribution and divided into 30 equal probability bins from -2σ to +2σ. Thirty sets of 

ground motions consistent with the foundation input spectra (Figure 3) are also developed for probabilistic 

SSI analyses. These 30 sets of ground motions are randomly and uniquely paired to the 30 randomized SSI 

models.  

 

Case study 1 results 

 

For each SSI analysis case, the co-directional ISRS due to input motions in three orthogonal directions were 

computed at each selected node through algebraic summation of the time histories in each direction 

resulting from input motions in all three directions. This was accomplished by extracting the acceleration 

time histories in all three directions due to the input motion in each direction (9 total) and adding the 

accelerations algebraically in each direction at each time step. The ISRS were then calculated based on the 

co-directional time histories that were generated in each direction.  

 

The SSI analyses indicated the dominant frequencies of the SSI system of about 3 Hz. This frequency 

is mainly dominated by the frequency response of the soil and is, therefore, approximately the same in both 

N-S and E-W directions.  

 

Figure 4 shows the average ISRS response at 5% damping at the roof of the building model. It also 

shows the empirical ISRS results obtained from the procedures in IAEA TECDOC 1348 and ASCE 7-22. 

The same figure also shows the building input spectra at the foundation elevation.  
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Figure 2. FE Model Isometric View (Top) and Elevation Section View (Bottom) of the Building Used for 

Numerical ISRS Computation 

 

Table 3: Structural Material Properties Used in the Numerical Model 

 

Material 
Elastic 

Modulus (ksf) 

Poisson's 

Ratio 

Damping 

Ratio 

Logarithmic Standard Deviation 

Elastic Modulus Damping 

Concrete 500,000 0.25 0.07 0.4 0.35 

 

 

 
 

Figure 3. Response Spectra of the Input Motions Used in the Numerical Analyses 
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Figure 4. Comparison of the 5% Damping ISRS Computed from the Numerical Analyses with the 

Empirical Methods and the Foundation Input Spectra, N-S Direction (Left) and E-W Direction (Right) 

 

As can be seen, both ASCE 7 (2022) and IAEA-TECDOC-348 (1985) methods result in similar peak 

spectral accelerations. The results of these empirical methods also agree reasonably well with the 84th 

percentile peak spectral acceleration obtained from probabilistic numerical analyses, although they are 

somewhat more conservative. The PGA of the ISRS from IAEA-TECDOC-348 PGA is also fairly close to 

the 84th percentile PGA obtained from the probabilistic numerical analyses.  

 

CASE STUDY 2  

 

The second case study compares the recorded ISRS obtained from an instrumented low-rise concrete 

building with those obtained from the empirical methods by IAEA-TECDOC-348 (1985) and ASCE 7 

(2022).  

 

Description of the structure and input data 

 

The building used in this case study is a rectangular 48 ft. tall, three-story reinforced concrete shear wall 

structure with plan dimensions of about 162 ft. by 79 ft. The floor system consists of 3-inch reinforced 

concrete slabs at each story and a 2.75-inch reinforced concrete slab at the roof. The building is a surface-

founded structure, and the foundation type is spread footing. Figure 2 shows a photo of the building and the 

schematic plan and elevation views. The small arrows indicate the locations and directions of the 

accelerometers installed throughout this building. 

 

Case study 2 results 

 

There are five earthquake records available for this building in the CESMD (2022) database. These 

earthquakes and their dates of occurrence and magnitudes are shown in Table 4. The response spectra of 

the recorded accelerations at the foundation of the instrumented building from the five available earthquake 

records in the CESMD (2022) database are shown in Figure 6. Similarly, the ISRS of the recorded 

accelerations at the roof of the instrumented building from the five earthquake records in CESMD (2022) 

are shown in Figure 7. These spectra are scaled (anchored) to 0.5g peak ground acceleration (PGA) which 

is the site-specific design PGA at the location of the instrumented building (Taft, CA) from the USGS 

hazard maps (obtained from the ASCE 7 hazard tool (2022).  
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Figure 5. Photo of the Instrumented Building (Top) and Schematic Elevation and Plan Views (Bottom)  

 

The ISRS results show very distinct peaks at the frequency of 5 Hz, and 4.2 Hz in the N-S and E-W 

directions, respectively, indicating that these are the dominant frequencies of the instrumented building in 

these directions.  

 

Figure 8 compares the average (mean) and envelope ISRS response at 5% damping at the roof of the 

instrumented building with the empirical ISRS obtained from the procedure in IAEA TECDOC 348 (1985) 

and ASCE 7 (2022). The same figure also shows the envelope of the building input spectra at the foundation 

elevation. Given the low magnitude of the earthquakes in Table 4, a damping ratio of 4% is assigned to the 

building in this case study. 

 

Table 4: Earthquakes with Available Acceleration Data in CESMD (2022) for the Instrumented Building 

 

Earthquake Name Date  Magnitude Ground PGA (g) 

Maricopa 08 May 2010 4.3ML 0.010 

Isla Vista 29 May 2013 4.8ML 0.006 

Wasco 24 February 2016 4.9MW 0.012 

Ridgecrest 6 July 2019 7.1MW 0.009 

Lone Pine 24 June 2020 5.8MW 0.005 
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Figure 6. 5% Damping Scaled Response Spectra from Various Earthquakes at the Foundation of the 

Instrumented Building, N-S Direction (Left) and E-W Direction (Right) 

 

 
 

Figure 7. 5% Damping Scaled ISRS from Various Earthquakes at the Roof of the Instrumented Building, 

N-S Direction (Left) and E-W Direction (Right) 

 
Figure 8. Comparison of the 5% Damping Scaled ISRS Obtained from the Recorded Accelerations with 

the Empirical Methods and the Foundation Input Spectra, N-S Direction (Left) and E-W Direction (Right) 
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As can be observed, the IAEA-TECDOC-348 (1985) method results in similar peak spectral 

accelerations to the envelope of the scaled ISRS. Considering that the shape of the ISRS from the five 

acceleration records are reasonably similar, the envelope of the scaled ISRS can be considered as the design 

(or 80th percentile) ISRS. The PGA of the ISRS from IAEA-TECDOC-348 PGA is also fairly close to the 

envelope of the PGA obtained from recorded earthquakes. On the other hand, the ASCE 7 (2022) method 

significantly underestimates the peak spectral acceleration for this building. As can be seen, the peak 

spectral acceleration from ASCE 7 (2022) is between 25% to 35% below the recorded envelope of the 

measured peak spectral acceleration in this case.  Is it possible that this underestimation is because ASCE 

7 (2022) is considering overstrength and ductility in response, whereas the empirical earthquakes are low 

enough amplitude that the structure is responding essentially elastically. Additionally, the ASCE 7’s 

equation is intended to predict the inertia force applicable for the design of equipment, which may be 

different from the peak of the ISRS (i.e., the response of the instrumented building). For example, Section 

6.2.3 of ASCE 4 (2016) allows for a 15% peak reduction for narrow frequency peak amplitudes for analysis 

of sub-systems. Considering a 15% reduction in the peak of the measured response spectra would provide 

a favorable comparison with the peak spectral acceleration of ASCE 7 (2022).   

 

CONCLUSIONS 

 

This paper compares the ISRS obtained from probabilistic transient analyses of the numerical model of an 

example nuclear plant low-rise shear-wall structure and the ISRS obtained from the recorded accelerations 

in an instrumented low-rise shear-wall building with those from standards-based simplified empirical 

methods outlined in IAEA-TECDOC-348 (1985) and ASCE 7 (2022). Since the empirical methods and the 

instrumentation data were primarily available for the horizontal response at the time of writing this paper, 

this study considers horizontal response only, and the evaluation of the vertical response is not part of the 

current study. 

 

The results indicate that the IAEA-TECDOC-348 (1985) empirical method can predict the ISRS 

response of both the numerical model and the instrumented building well and may therefore have broader 

opportunities for use in lieu of time-consuming detailed SSI analyses.  

 

While the peak spectral acceleration obtained from the ASCE 7 (2022) procedure is reasonably 

comparable to the results of the numerical model, it underestimates the narrow-band measured response of 

the instrumented building by about 25% to 35%. Is it possible that this underestimation is because ASCE 7 

(2022) is considering overstrength and ductility in the response estimate, whereas the empirical earthquakes 

are low enough amplitude that the structure is responding essentially elastically. Moreover, given the 

narrow-band frequency of the measured roof response spectra, a 15% peak reduction for narrow frequency 

peak amplitudes is permissible in ASCE 4 (2016), and would provide a more favorable comparison with 

the peak spectral acceleration of ASCE 7 (2022). 

 

 These conclusions may be case-specific, such that generalized conclusions are not appropriate from 

the limited exploration and case studies presented here. Additional sensitivity studies and more in-depth 

evaluation are recommended. However, preliminary insights suggest that it may be feasible to utilize a more 

simplified consideration of in-structure seismic demands on nuclear facility equipment than detailed 

dynamic transient and still achieve equivalent seismic safety.   
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